Свойства и особенности сердечной мышцы. Физиологические свойства сердечной мышцы

Сердечная мышца, так же как и скелетная, обладает возбудимостью, проводимостью и сократимостью, но эти свойства сердечной мышцы имеют свои особенности. Сердечная мышца сокращается медленно и работает в режиме одиночных сокращений, а не титанических как скелетная. Значение этого легко понять, если вспомнить, что сердце при своей работе перекачивает кровь из вен в артерии и должно наполняться кровью в промежутках между сокращениями.

Если сердце раздражать частыми ударами электрического тока, то оно в отличие от скелетных мышц не приходит в состояние непрерывного сокращения: наблюдаются отдельные более или менее ритмичные сокращения. Это объясняется длительной рефрактерной фазой, присущей сердечной мышце.

Рефрактерной фазой называется период не возбудимости, когда сердце утрачивает способность отвечать возбуждением и сокращением на новое раздражение.

Эта фаза длится весь период систолы желудочка. Если в это время раздражать сердце, то никакого ответа не последует. На раздражение, нанесенное в период диастолы, сердце, не успев расслабиться, отвечает новым внеочередным сокращением-экстрасистолой, после которой следует длительная пауза, называемая компенсаторной.

Сердце обладает автоматизмом. Это значит, что импульсы к сокращению возникают в нем самом, тогда как к скелетным мышцам они приходят по двигательным нервам из центральной нервной системы. Если перерезать все нервы, подходящие к сердцу, или даже отделить его от организма, оно будет длительно ритмически сокращаться.

Электрофизиологическими исследованиями установлено, что в клетках проводящей системы сердца ритмически возникает деполяризация клеточной мембраны, обусловливающая появление возбуждения, которое вызывает сокращение мускулатуры сердца.

Проводящая система сердца

Система, проводящая возбуждение в сердце, состоит из атипичных мышечных волокон, обладающих автоматизмом, и включает синусно-предсердный узел, расположенный в области впадения полых вен, предсердно-желудочковый узел, расположенный в правом предсердии, вблизи его границы с желудочками, и предсердно-желудочковый пучок. Последний, начинаясь от одноименного узла, проходит межпредсердную и межжелудочковую перегородки и делится на две ножки - правую и левую. Ножки опускаются под эндокардом по межжелудочковой перегородке к верхушке сердца, где ветвятся и в виде отдельных волокон - проводящих сердечных миоцитов (волокна Пуркинье) распространяются под эндокардом по всему желудочку.

В сердце здорового человека возбуждение возникает синусно-предсердном узле. Этот узел называют водителем ритма. По пучку атипических мышечных волокон оно распространяется к предсердно-желудочковому узлу, а от него по предсердно-желудочковому пучку - к миокарду желудочков. В предсердно-желудочковом узле скорость проведения возбуждения заметно снижается, поэтому предсердия успевают сократиться прежде, чем начнется систола желудочков. Таким образом, система, проводящая возбуждение, не только рождает импульсы возбуждения в сердце, но и регулирует последовательность сокращений предсердий и желудочков.

Ведущую роль синусно-предсердного узла в автоматизме сердца можно показать в опыте: при местном согревании области узла деятельность сердца ускоряется, а при охлаждении замедляется. Согревание и охлаждение других частей сердца не влияет на частоту его сокращений. После разрушения синусно-предсердного узла деятельность сердца может продолжаться, но в более медленном ритме - 30-40 сокращений в минуту. Водителем ритма становится предсердно-желудочковый узел. Эти данные свидетельствуют о градиенте автоматизма, о том, что автоматизм разных отделов системы, проводящей возбуждение неодинаков.

Под сердечным циклом понимают последовательные чередования сокращения (систола) и расслабления (диастола) полостей сердца, в результате чего происходит перекачивание крови из венозного русла в артериальное.

В сердечном цикле выделяют три фазы: 1. Систола предсердий и диастола желудочков;

2. Диастола предсердий и систола желудочков;

3. Общая диастола предсердий и желудочков.

Сердечный толчок – это удар сердца о грудную клетку. Он обнаруживается при внешнем осмотре животного и пальпации с левой стороны грудной клетки. Сердечный толчок возникает вследствие того, что во время систолы желудочков сердце напрягается, становится более плотным и упругим, приподнимается(т. к. в грудной полости сердце как бы подвешено на крупных кровеносных сосудах) ,а у кошек и собак и слегка поворачивается вокруг своей оси, ударяясь о грудную стенку верхушкой (верхушечный сердечный толчок). При клиническом осмотре животного обращают внимание на топографию сердечного толчка, на его силу и частоту.

Частота и ритм сердечных сокращений. Под частотой сокращений понимают количество сердечных циклов в 1 минуту. Частоту сокращений можно определить по числу сердечных толчков, т.е. систол желудочков в течение 1 минуты. Учащение сердечных сокращений – тахикардия, урежение — брадикардия.

Под ритмом сердечной деятельности понимают правильное согласование во время сердечных циклов. Сердечная деятельность может быть ритмичной (одинаковые интервалы) и неритмичной. Изменения сердечного ритма называют аритмиями. Аритмии могут быть физиологическими и патологическими. У здоровых животных физиологические аритмии наблюдаются во время дыхательного цикла и называются дыхательной аритмией. Физиологическая аритмия может быть у молодых животных (в период полового созревания). Оба вида аритмии не требуют специального лечения.

Тоны сердца — это звуки, которые возникают во время работы сердца. Основной источник звуковых явлений – работа клапанного аппарата, звуки возникают во время захлопывания клапанов. Тоны сердца можно услышать приложив к грудной клетке аппарат для прослушивания- стетоскоп или фонендоскоп. Прослушиваются тоны сердца в тех местах, где клапаны проецируются на поверхность грудной клетки. Эти четыре точки (по количеству клапанов) называются точками наилучшей слышимости. При анализе сердечных тонов обращают внимание на их топографию. силу, частоту. ритмичность и наличие или отсутствие дополнительных- патологических – звуков, которые называются шумами. Исследование тонов сердца является основным клиническим методом изучения состояния клапанного аппарата сердца. Атриовентрикулярные клапаны захлопываются в начале систолы желудочков, а полулунные – в начале диастолы желудочков. Различают два основных тона сердца: первый (систолический), второй (диастолический).

Первый тон – систолический, совпадает с систолой желудочков, он низкий, глухой, протяжный. Второй тон — диастолический, совпадает с началом диастолы желудочков, звук короткий, высокий, звонкий, отрывистый. Третий и четвертый тоны сливаются с основными при прослушивании и поэтому не различаются.

Электрокардиография

ЭКГ – это метод регистрации электрических потенциалов, возникающих при работе сердца. Запись биотоков сердца называется электрокардиограммой.

В ветеринарной практике для снятия ЭКГ применяют различные способы наложения электродов, или отведения. Стандартный способ отведения биопотенциалов – наложение электродов на конечности:

1. Первое отведение: пясти левой и правой грудных конечностей – регистрируются потенциалы предсердий.

2. Второе отведение: пясть правой грудной и плюсна левой тазовой конечности — регистрируется возбуждение желудочков.

3. Третье отведение: пясть левой грудной и плюсна левой тазовой конечности — регистрируется отведение левого желудочка.

ЭКГ состоит из ровной изопотенциальной линии. которая соответствует потенциалу покоя, и пяти зубцов- P, Q ,R ,S ,T. Три зубца (P, R ,T), идущие вверх от изопотенциальной линии, являются положительными, а два зубца (Q. S). направленные вниз от нее — отрицательными.

  • Зубец R — сумма потенциалов предсердий. Возникает в период распространения возбуждения по предсердиям.
  • Интервал P-Q — время прохождения возбуждения от предсердий к желудочкам.
  • Зубец Q — возбуждение внутренних слоев мышцы желудочков, правой сосочковой мышцы, перегородки. верхушки левого и основания правого желудочков.
  • Зубец R — распространение возбуждения на мышцы обоих желудочков.
  • Зубец S — охват возбуждением желудочков.
  • Интервал S-T отражает отсутствие разницы потенциалов в период. когда миокард охвачен возбуждением. В норме изопотенциален.
  • Зубец Т — фаза восстановления (реполяризации) миокарда желудочков.
  • QRS- время, в течение которого возбуждение успевает полностью охватить мышцы желудочков.
  • QRST- время возбуждения и восстановления миокарда желудочков.
  • Интервал T-P-возбуждение в желудочках уже закончилось, а в предсердиях еще не началось.Называется электрической диастолой сердца.
  • Интервал R-R (или Р-Р) соответствует полному циклу сердечной деятельности.

При анализе ЭКГ учитывают высоту зубцов, их направленность от изопотенциальной линии и продолжительность интервалов.

ЭКГ в комплексе с другими клиническими методами исследования применяется для диагностики заболеваний сердца, особенно таких. которые связаны с расстройством возбудимости проводимости сердечной мышцы.

Физиология кровообращения.

Система кровообращения — это непрерывное движение крови по замкнутой системе полостей сердца и сети кровеносных сосудов, которые обеспечивают все жизненно важные функции организма.

Сердце представляет собой первичный насос, который придает энергию движения крови. Это сложный пункт пересечения разных потоков крови. В нормальном сердце смешивания этих потоков не происходит. Сердце начинает сокращаться примерно через месяц после зачатия, и с этого момента его работа не прекращается до последнего мгновения жизни.

За время, равное средней продолжительности жизни, сердце осуществляет 2,5 млрд. сокращений, и при этом оно перекачивает 200 млн. литров крови. Это уникальный насос, который имеет размер с мужской кулак, а средний вес у мужчины составляет 300г, а у женщины — 220г. Сердце имеет вид тупого конуса. Длина его составляет 12-13 см, ширина 9-10,5 см, а передне-задний размер равен 6-7см.

Система кровеносных сосудов составляет 2 круга кровообращения.

Большой круг кровообращения начинается в левом желудочке аортой. Аорта обеспечивает доставку артериальной крови к различным органам и тканям. При этом от аорты отходят параллельные сосуды, которые приносят кровь к разным органам. артерии переходят в артериоллы, а артериоллы - в капилляры. Капилляры обеспечивают всю сумму обменных процессов в тканях. Там кровь становится венозной, она оттекает от органов. Она притекает к правому предсердию по нижней и верхней полой венам.

Малый круг кровообращения начинается в правом желудочке лёгочным стволом, который делится на правую и левую легочную артерии. Артерии несут венозную кровь к легким, где будет происходить газообмен. Отток крови из легких осуществляется по легочным венам (2 от каждого лёгкого),которые несут артериальную кровь в левое предсердие. Основная функция малого круга- транспортная, кровь доставляет клеткам кислород, питательные вещества, воду, соль, а из тканей выводит углекислый газ и конечные продукты обмена.

Кровообращение - это самое важное звено в процессах газообмена. С кровью транспортируется тепловая энергия - это теплообмен с окружающей средой. За счет функции кровообращения происходит перенос гормонов и других физиологически активных веществ. Это обеспечивает гуморальную регуляцию деятельности тканей и органов. Современные представления о системе кровообращения были изложены Гарвеем, который в 1628 году опубликовал трактат о движении крови у животных. Он пришел к выводу о замкнутости системы кровообращения. Используя метод пережатия кровеносных сосудов, он установил направленность движения крови . От сердца, кровь движется по артериальным сосудам, по венам, кровь движется к сердцу. Деление строится по направлению течения, а не по содержанию крови. Также были описаны основные фазы сердечного цикла. Технический уровень не позволял в то время обнаружить капилляры. Открытие капилляров было сделано позднее (Мальпиге), который подтвердил предположения Гарвея о замкнутости кровеносной системы. Гастро-васкулярная система- это система каналов, связанных с основной полостью у животных.

Эволюция системы кровообращения.

Кровеносная система в форме сосудистых трубок появляется у червей, но у червей в сосудах циркулирует гемолимфа и эта система еще не замкнута. Обмен осуществляется в лакунах - это межтканевое пространство.

Далее происходит замкнутость и появление двух кругов кровообращения. Сердце в своем развитии проходит стадии - двухкамерного - у рыб (1 предсердие, 1 желудочек). Желудочек выталкивает венозную кровь. В жабрах происходит газообмен. Далее кровь идет в аорту.

У земноводных сердце трёхкамерное (2 предсердия и 1 желудочек); правое предсердие получает венозную кровь и проталкивает кровь в желудочек. Из желудочка выходит аорта, в которой имеется перегородка и она делит кровоток на 2 потока. Первый поток идет в аорту, а второй — в легкие. После газообмена в легких кровь поступает в левое предсердие, а затем в желудочек, где происходит смешивание крови.

У рептилий заканчивается дифференцировка клеток сердца на правую и левую половину, но у них имеется отверстие в межжелудочковой перегородке и кровь смешивается.

У млекопитающих полное разделение сердца на 2 половины. Сердце можно рассматривать как орган, образующий 2 насоса - правый - предсердие и желудочек, левый - желудочек и предсердие. Здесь уже не происходит смешивания протоков крови.

Сердце расположено у человека в грудной полости, в средостении между двумя плевральными полостями. Спереди сердце ограничено грудиной, сзади — позвоночником. В сердце выделяют верхушку, которая направлена влево, вниз. Проекция верхушки сердца находится на 1 см внутрь от левой средней ключичной линии в 5ом межреберье. Основание направленно вверх и вправо. Линия соединяющая верхушку и основание - это анатомическая ось, которая направлена сверху вниз, справа налево и спереди назад. Сердце в грудной полости лежит ассиметрично. 2/3 слева от срединной линии, верхняя граница сердца - верхний край 3го ребра, а правая граница на 1 см кнаружи от правого края грудины. Оно практически лежит на диафрагме.

Сердце - это полый мышечный орган, который имеет 4 камеры - 2 предсердия и 2 желудочка. Между предсердиями и желудочками находятся атрио-вентрикулярные отверстия, в которых будут находится атрио-вентрикулярные клапаны. Атрио-вентрикулярные отверстия образованы фиброзными кольцами. Они отделяют миокард желудочков от предсердий. Место выхода аорты и легочного ствола образованы фиброзными кольцами. Фиброзные кольца - скелет, к которому прикрепляются его оболочки. В отверстиях, в области выхода аорты и легочного ствола имеются полулунные клапаны.

Сердце имеет 3 оболочки.

Наружная оболочка- перикард . Он построен из двух листков - наружного и внутреннего, который срастается со внутренней оболочкой и называется миокард. Между перикардом и эпикардом образуется пространство, заполненное жидкостью. В любом движущемся механизме возникают трения. Для более легкого движения сердца ему необходима эта смазка. Если есть нарушения, то возникают трения, шумы. В этих участках начинают образовываться соли, которые замуровывают сердце в «панцирь». Это уменьшает сократительную способность сердца. В настоящее время хирурги удаляют, скусывая этот панцирь, освобождая сердце, для возможности осуществления сократительной функции.

Средний слой — мышечный или миокард. Он является рабочей оболочкой и составляет основную массу. Именно миокард выполняет сократительную функцию. Миокард относится к исчерченным поперечно полосатым мышцам, состоит из индивидуальных клеток - кардиомиоцитов, которые связаны между собой в трехмерную сеть. Между кардиомиоцитами образуются плотные контакты. Миокард прикрепляется к кольцам фиброзной ткани, фиброзному скелету сердца. Он имеет прикрепление к фиброзным кольцам. Миокард предсердий образует 2 слоя - наружный циркулярный, который окружает оба предсердия и внутренний продольный, который индивидуален для каждого. В области впадения вен - полых и легочных образуются кольцевые мышцы, которые формируют сфинктеры и при сокращении этих кольцевых мышц кровь из предсердия не может поступить обратно в вены. Миокард желудочков образован 3мя слоями - наружным косым, внутренним продольным, и между этими двумя слоями распологается циркулярный слой. Миокард желудочков начинается от фиброзных колец. Наружный конец миокарда идет косо к верхушке. На верхушке этот наружный слой образует завиток(vertex), его и волокна переходят во внутренний слой. Между этими слоями находятся циркулярные мышцы, отдельные для каждого желудочка. Трёхслойное строение обеспечивает укорочение и уменьшение просвета (диаметра). Это и обеспечивает возможность выталкивания крови из желудочков. Внутренняя поверхность желудочков выстлана эндокардом, которая переходит в эндотелий крупных сосудов.

Эндокард — внутренний слой — покрывает клапаны сердца, окружает сухожильные нити. На внутренней поверхности желудочков миокард образует трабекулярную сеть и сосочковые мышц и сосочковые мышцы связаны со створками клапанов(сухожильными нитями). Именно эти нити удерживают створки клапана и не дают выворачиваться им в предсердие. В литературе сухожильные нити называются сухожильными струнами.

Клапанный аппарат сердца.

В сердце принято различать атрио-вентрикулярные клапаны, расположенные между предсердиями и желудочками - в левой половине сердца это двухстворчатый, в правой - трёхстворчатый клапан, состоящий из трёх створок. Клапаны открываются в просвет желудочков и пропускают кровь из предсердий в желудочек. Но при сокращении клапан закрывается и возможность крови поступать обратно в предсердие утрачивается. В левом - величина давления намного больше. Более надежными являются структуры с меньшим числом элементов.

У места выхода крупных сосудов - аорта и легочный ствол — находятся полулунные клапаны, представленные тремя кармашками. При наполнении крови в кармашках, происходит закрытие клапанов, поэтому обратного движения крови не происходит.

Назначением клапанного аппарата сердца является обеспечение одностороннего тока крови. Поражение створок клапана приводит к недостаточности клапана. При этом наблюдается обратный ток крови в результате неплотного соединения клапанов, что нарушает гемодинамику. Границы сердца меняются. Получаются признаки развития недостаточности. Вторая проблема, связанная с областью клапанов, стенозирование клапанов - (стенозируется, например, венозное кольцо) - просвет уменьшается.Когда говорят о стенозе, значит говорят либо об атрио-вентрикулярных клапанах, либо о месте отхождения сосудов. Над полулунными клапанами аорты, из её луковицы, отходят коронарные сосуды. У 50% людей кровоток правой больше чем в левой, у 20% кровоток больше в левой чем в правой, 30 % имеют одинаковый отток как в правой, так и в левой коронарной артерии. Развитие анастомозов между бассейнами коронарных артерий. Нарушение кровотоков коронарных сосудов сопровождается ишемией миокарда, стенокардии, а полная закупорка приводит к омертвлению - инфаркту. Венозный отток крови идет по поверхностной системе вен, так называемый коронарный синус. Имеются также вены, которые непосредственно открываются в просвет желудочка и правого предсердия.

Сердечный цикл.

Сердечный цикл — это период времени, в течении которого происходит полное сокращение и расслабление всех отделов сердца. Сокращение - систола, расслабление - диастола. Продолжительность цикла будет зависеть от частоты сердечных сокращений. В норме частота сокращений колеблется от 60 до 100 ударов в минуту, но средняя частота составляет 75 ударов в минуту. Чтобы определить длительность цикла делим 60с на частоту.(60с / 75 с=0,8с).

Сердечный цикл состоит из 3х фаз:

Систола предсердий - 0,1 с

Систола желудочка - 0,3 с

Общая пауза 0,4 с

Состояние сердца в конце общей паузы. створчатые клапаны находятся в открытом состоянии, полулунные клапаны закрыты и кровь поступает из предсердий в желудочки. К концу общей паузы желудочки наполнены на 70-80% кровью. Сердечный цикл начинается с

систолы предсердий. В это время происходит сокращение предсердий, что необходимо для завершения наполнения желудочков кровью. Именно сокращение миокарда предсердий и повышение давления крови в предсердиях - в правом до 4-6 мм рт ст, а в левом до 8-12 мм рт ст. обеспечивает нагнетание дополнительной крови в желудочки и систола предсердий завершает наполнение желудочков кровью. Кровь обратно поступать не может, так как сокращаются кольцевые мышцы. В желудочках будет находится конечный диастолический объем крови . В среднем он составляет 120-130 мл, но у людей занимающихся физической нагрузкой до 150-180 мл, что обеспечивает более эффективную работу, этот отдел переходит в состояние диастолы. Далее идет систола желудочков.

Систола желудочков - наиболее сложная фаза сердечного цикла, продолжительностью 0,3 с. В систоле выделяют период напряжения . он длится 0,08 с и период изгнания . Каждый период подразделяется на 2 фазы -

период напряжения

1. фаза асинхронного сокращения - 0,05 с

2. фазы изометрического сокращения - 0,03 с. Это фаза изовалюмического сокращения.

период изгнания

1. фаза быстрого изгнания 0,12с

2. фаза медленного 0,13 с.

Систола желудочков начинается с фазы асинхронного сокращения. Часть кардиомиоцитов оказываются возбужденными и вовлекаются в процесс возбуждения. Но возникающее напряжение в миокарде желудочков обеспечивает повышение давления в нем. Эта фаза заканчивается закрытием створчатых клапанов и полость желудочков оказывается замкнутой. Желудочки наполнены кровью и полость их замкнута, а кардиомиоциты продолжают развивать состояние напряжения. Длина кардиомиоцита не может изменится. Это связано со свойствами жидкости. Жидкости не сжимают. При замкнутом пространстве, когда происходит напряжение кардиомиоциттов сжать жидкость невозможно. Длина кардиомиоцитов не меняется. Фаза изометрического сокращения. Сокращение при низменной длине. Эту фазу называют изовалюмической фазой. В эту фазу не меняется объем крови. Пространство желудочков замкнуто, повышается давление, в правом до 5-12 мм рт.ст. в левом 65-75 мм.рт.ст, при этом давление желудочков станет больше диастолического давления в аорте и легочном стволе и превышение давления в желудочках над давлением крови в сосудах приводит к открытию полулунных клапанов. Полулунные клапаны открываются и кровь начинает поступать в аорту и легочный ствол.

Наступает фаза изгнания. при сокращении желудочков кровь выталкивается в аорту, в легочный ствол, изменяется длина кардиомиоцитов, давлении повышает и на высоте систолы в левом желудочке 115-125 мм, в правом 25-30мм. Вначале фаза быстрого изгнания, а затем изгнание становится более медленным. За время систолы желудочков выталкивается 60 - 70 мл крови и вот это количество крови - систолический объем. Систолический объем крови =120-130 мл, т.е. в желудочках в конце систолы остается еще достаточный объем крови - конечный систолический объем и это своеобразный резерв, чтобы если потребуется - увеличить систолический выброс. Желудочки завершают систолу и в них начинается расслабление. Давление в желудочках начинает падать и кровь, которая выброшена в аорту, легочный ствол устремляется обратно в желудочек, но на своем пути она встречает кармашки полулунного клапана, которые наполняюсь закрывают клапан. Этот период получил название протодиастолический период - 0,04с. Когда полулунные клапаны закрылись, створчатые клапаны тоже закрыты, начинается период изометрического расслабления желудочков. Он длится 0,08с. Здесь происходит спад напряжения без изменения длины. Это вызывает понижение давления. В желудочках скопилась кровь. Кровь начинает давить на атрио-вентрикялрыне клапаны. Происходит их открытие в начале диастолы желудочков. Наступает период наполнения крови кровью — 0,25 с, при этом выделяют фазу быстрого наполнения - 0,08 и фазу медленного наполнения - 0,17 с. Кровь свободно из предсердий поступает в желудочек. Это пассивный процесс. Желудочки на 70-80% будут наполняться кровью и завершится наполнение желудочков уже следующей систолой.

Строение сердечной мышцы.

Сердечная мышца имеет клеточное строение и клеточное строение миокарда было установлено еще в 1850 году Келликером, но длительное время считалось, что миокард представляет собой сеть - сенцидий. И только электронная микроскопия подтвердила, что каждый кардиомиоцит имеет свою собственную мембрану и отделен от других кардиомиоцитов. Область контактов кардиомиоцитов - это вставочные диски. В настоящее время клетки сердечной мышцы подразделяют на клетки рабочего миокарда - кардиомиоциты рабочего миокрада предсердий и желудочков и на клетки проводящей системы сердца. Выделяют:

-переходные клетки

-клетки Пуркинье

Клетки рабочего миокарда принадлежат исчерченным мышечным клеткам и кардиомиоциты имеют вытянутую форму, длин достигает 50мкм, диаметр - 10-15 мкм. Волокна состоят из миофибрилл, наименьшей рабочей структурой которых является саркомер. Последний имеет толстые — миозиновые и тонкие - актиновые ветви. На тонких нитях имеются регуляторные белки - тропанин и тропомиозин. В кардииомиоцитах имеются также продольная система L трубочек и поперечные T трубочки. Однако Т трубочки, в отличии от Т-трубочек скелетных мышц, отходят на уровне мембран Z (в скелетных — на границе диска A и I). Соседние кардиомиоциты соединяются с помощью вставочного диска- область контакта мембран. При этом структура вставочного диска неоднородная. ВО вставочном диске можно выделить область щели(10-15Нм). Вторая зона плотного контакта - десмосомы. В области десмосом наблюдается утолщение мембраны, здесь же проходят тонофибриллы(нити связывающие соседние мембраны). Десмосомы имеют протяженность 400нм. Есть плотные контакты, они получили название нексусов, при котором происходит слияние наружных слоев соседних мембран, сейчас обнаружены - конексоны - скрепление за счет специальных белко - конексинов. Нексусы - 10-13%, эта область имеет очень низкое электрическое сопротивление 1,4 Ома на кВ.см. Это обеспечивает возможность передачи электрического сигнала с одной клетки на др. и поэтому кардиомиоциты включаются одновременно в процесс возбуждения. Миокард - функциональный сенсидий.

Физиологические свойства сердечной мышцы .

Кардиомиоциты изолированы друг от друга и контактируют в области вставочных дисков, где соприкасаются мембраны соседних кардиомиоциов.

Коннесксоны- это соединение в мембране соседних клеток. Образуются эти структуры за счет белков коннексинов. Коннексон окружают 6 таких белков, внутри коннексона образуется канал, который позволяет проходит ионам, таким таким образом электрический ток распространяется от одной клетки к другой. “f область имеет сопротивление 1,4 ом на см2(низкое). Возбуждение охватывает кардиомиоциты одновременно. Они функционирую как функциональный сенсициы. Нексусы очень чувствительны к недостатку кислорода, к действию катехоламинов, к стрессовым ситуациям, к физической нагрузке. Это может вызывать нарушение проведения возбуждения в миокарде. В экспериментальных условиях нарушение плотных контактов можно получить при помещении кусочков миокарда в гипертонический раствор сахарозы. Для ритмической деятельности сердца важна проводящая система сердца - эта система состоит из комплекса мышечных клеток, образующих пучки и узлы и клетки проводящей системы отличаются от клеток рабочего миокарда - они бедны миофибриллами, богаты саркоплазмой и содержат высокое содержание гликогена. Эти особенности при световой микроскопии делают их более светлыми с малой поперечной исчерченностью и они были названы атипическими клетками.

В состав проводящей системы входят:

1. Синоатриальный узел (или узел Кейт-Фляка), расположенный в правом предсердии у места впадения верхней полой вены

2. Атриовентрикулярный узел(или узел Ашоф-Тавара), который лежит в правом предсердии на границе с желудочком — это задняя стенка правого предсердия

Эти два узла связаны внутрипредсердными трактами.

3. Предсердные тракты

— передний — с ветвью Бахмена (к левому предсердию)

— средний тракт (Венкебаха)

— задний тракт (Тореля)

4. Пучок Гисса (отходит от атриовентрикулярного узла. Проходит через фиброзную ткань и обеспечивает связь миокарда предсердия с миокардом желудочка. Проходит в межжелудочковую перегородку, где разделяется на правую и илевую ножку пучка Гисса)

5. Правая и левая ножки пучка Гисса (они идут вдоль межжелудочковой перегородки. Левая ножка имеет две ветви - переднюю и заднюю. Конечными разветвлениями будут являться волокна Пуркинье).

6. Волокна Пуркинье

В проводящей системе сердца, которая образована видоизмененными типами мышечных клеток, имеются три вида клеток. пейсмейкерные (P), переходные клетки и клетки Пуркинье.

1. P -клетки . Находятся в сино-артриальном узле, меньше в атриовентрикулярном ядре. Это самые мелкие клетки, в них мало т - фибрилл и митохондрий, т-система отсутствует, l. система развита слабо. Основной функцией этих клеток является генерация потенциала действия за счет врожденного свойства медленной диастолической деполяризации. В них происходит периодическое снижение мембранного потенциала, которое приводит их к самовозбуждению.

2. Переходные клетки осуществляют передачу возбуждения в области атривентрикуярного ядра. Они обнаруживаются между P клетками и клетками Пуркинье. Эти клетки вытянутой формы, у них отсутствует саркоплазматический ретикулум. Эти клетки облают замедленной скоростью проведения.

3. Клетки Пуркинье широкие и короткие, в них больше миофибрилл, лучше развит саркоплазматический ретикулум, T-система отсутствует.

Электрические свойства клеток миокарда.

Клетки миокарда, как рабочего, так и проводящей системы, обладают мембранным потенциалам покоя и снаружи мембрана кардиомиоцита заряжена «+», а внутри «-». Это обусловлено ионной ассиметрией - внутри клеток в 30 раз больше ионов калия, а снаружи в 20-25 раз больше ионов натрия. Это обеспечивается постоянной работой натрий-калиевым насосом. Измерение мембранного потенциала показывает, что клетки рабочего миокарда имеют потенциал - 80-90 мВольт. В клетках проводящей системы - 50-70 мВольт. При возбуждении клеток рабочего миокарда возникает потенциал действия (5 фаз). 0 — деполяризация, 1 — медленная реполяризация, 2 -плато, 3 — быстрая реполяризация, 4 — потенциал покоя.

0. При возбуждении возникает процесс деполяризации кардиомиоцитов, что связано с открытием натриевых каналов и повышение проницаемости для ионов натрия, которые устремляются внутрь кардиомиоцитов. При снижении мембранного потенциала о 30-40 милиВольт происходить открытие медленных натриево-кальцевых каналов. Через них могут входить натрий и дополнительно кальций. Это обеспечивает процесс деполяризации или овершут(реверсия) 120 мВольт.

1. Начальная фаза реполяризации. Происходит закрытие натриевых каналов и некоторое повышение проницаемости к ионам хлора.

2. Фаза Плато. Процесс деполяризации затормаживается. Связана с усилением выхода кальция внутрь. Он задерживает восстановление заряда на мембране. При возбуждении снижается калиевая проницаемость(в 5 раз). Калий не может выходить из кардиомиоцитов.

3. Когда кальцевые каналы закрываются происходит фаза быстрой реполяризации. За счет восстановления поляризации к ионам калия и мембранный потенциал возвращается к исходному уровню и наступает диастолический потенциал

4. Диастолический потенциал постоянно стабилен.

В клетках проводящей системы есть отличительные особенности потенциала.

1. Сниженный мембранный потенциал в диастолический период(50-70мВ).

2. Четвертая фаза не является стабильной. Отмечается постепенное снижение мембранного потенциала к пороговому критическому уровню деполяризации и постепенно медленно продолжает снижаться в диастолу, достигая критического уровня деполяризации, при котором происходит самовозбуждение П-клеток. В P-клетках происходит усиление проникновения ионов натрия и снижение выхода ионов калия. Повышается проницаемость ионов кальция. Эти сдвиги в ионном составе приводят к тому, что мембранный потенциал в P-клетках снижается до порогового уровня и p-клетка самовозбуждается обеспечивая возникновение потенциала действия. Плохо выражена фаза Плато. Фаза ноль плавно переходи ТВ процесс реполяризации, который восстанавливает диастолический мембранный потенциал, а дальше цикл повторяется вновь и P-клетки переходят в состояние возбуждения. Наибольшей возбудимостью обладают клетки сино-атриального узла. Потенциал в нем особо низок и скорость диастолической деполяризации наиболее высок. Это будет влиять на частоту возбуждения. P-клетки синусного узла генерируют частоту до 100 ударов в мин. Нервная система(симпатическая система) подавляют действие узла(70 ударов). Симпатическая система может повышать автоматию. Гуморальные факторы- адреналин, норадреналин. Физические факторы - механический фактор - растяжение, стимулируют автоматию, согревание, тоже увеличивает автоматию. Все это применяется в медицине. На этом основано мероприятие прямого и непрямого массажа сердца. Область атриовентрикулярного узла тоже обладает автоматией. Степень автоматии атриовентрикулярного узла выражена значительно меньше и как правило она в 2 раза меньше, чем в синусном узле - 35-40. В проводящей системе желудочков импульсы тоже могут возникать(20-30 в минуту). ПО ходу проводящей системы возникает постипенное снижение уровня автоматии, что получило название градиента автоматии. Синусный узел - центр автоматии первого порядка.

Станеус - ученый . Наложение лигатур на сердце лягушки(трёхкамерное). У правого предсердия имеется венозный синус, где лежит аналог синусного узла человека. Станеус накладывал первую лигатуру между венозным синусом и предсердием. Когда лигатура затягивалась сердце прекращала свою работу. Вторая лигатура накладывалась Станеусом между предсердиями и желудочком. В этой зоне находится аналог атрии-вентрикулярного узла, но 2ая лигатура имеет задачу не отделения узла, а его механическое возбуждение. Ее накладывают постепенно, возбуждая атриовентрикулярный узел и при этом возникает сокраение сердца. Желудочки получают вновь сокращаться под действием атрии-вентрикулярного узла. С частотой в 2 раза меньше. Если наложить третью лигатуру, которая отделяет атриовентрикулярный узел, то возникает остановка сердца. Все это дает нам возможность показать, что синусный узел является главным водителем ритма, атриовентрикулярный узел обладает меньшей автоматией. В проводящей системе существует убывающий градиент автоматии.

Физиологические свойства сердечной мышцы.

К физиологическим свойствам сердечной мышцы относятся возбудимость, проводимость и сократимость.

Под возбудимостью сердечной мышцы понимается ее свойство отвечать на действие раздражителей пороговой или над пороговой силы процессом возбуждения. Возбуждение миокарда можно получить на действие химических, механических, температурных раздражений. Эта способность отвечать на действие разных раздражителей используется при массаже сердца (механическое воздействие), введение адреналина, кардиостимуляторы. Особенностью реакции сердца на действие раздражителя, играет то что действует по принципу «Все или ничего». Сердце отвечает максимальным импульсом уже на пороговый раздражитель. Продолжительность сокращения миокарда в желудочках составляет 0,3с. Это обусловлено длительным потенциалом действия, который тоже длится до 300мс. Возбудимость сердечной мышцы может падать до 0 - абсолютно рефрактерная фаза. Никакие раздражители не могут вызвать повторного возбуждения(0,25-0,27с). Сердечная мышца абсолютно невозбудима. В момент расслабления(диастолы)абсолютная рефрактерная переходит в относительную рефрактерную 0,03-0,05с. В этот момент можно получить повторное раздражение на над пороговые раздражители. Рефрактерный период сердечной мышцы длится и совпадает по времени столько, сколько длится сокращение. Вслед за относительной рефрактерностью имеется небольшой период повышенной возбудимости - возбудимость становится выше исходного уровня - супер нормальная возбудимость. В эту фазу сердце особо чувствительно к воздействию других раздражителей(смогут возникать др. раздражители или экстрасистолы- внеочередные систолы). Наличие длительного рефрактерного периода должно оградить сердце от повторных возбуждений. Сердце выполняет насосную функцию. Промежуток между нормальным и внеочередным сокращением укорачивается. Пауза может быть нормальной или удлиненной. Удлиненную паузу называют компенсаторной. Причина экстрасистолов - возникновение других очагов возбуждения - атриовентрикулярный узел, элементы желудочковой части проводящей системы, клетки рабочего миокарда, Это может быть связано с нарушением кровоснабжением, нарушением проведения в сердечной мышцей, но все дополнительные очаги - эктопические очаги возбуждения. В зависимости от локализации - разные экстрасистолы - синусные, предсредные, атриовентрикулярные. Экстрасистолы желудочка сопровождаются удлиненной компенсаторнйо фазой. 3 дополнительное раздражение - причина внеочередного сокращения. Вовремя экстрасистола сердце утрачивает возбудимость. К ним приходит очередной импульс из синусного узла. Пауза нужна для восстановления нормального ритма. Когда в сердце происходит сбой сердце пропускает одно нормальное сокращение и дальше возвращается к нормальному ритму.

Проводимость - способность проводить возбуждение. Скорость проведения возбуждения в разных отделах неодинакова. В миокарде предсердий - 1 м/c и время проведения возбуждения занимает 0,035 с

Скорость проведения возбуждения

Миокард — 1 м/c 0,035

Aтриовентрикулярный узел 0,02 - 0-05 м/с. 0,04 с

Проведение система желудочков - 2-4,2 м/с. 0,32

В сумме от синусного узла до миокарда желудочка - 0,107 с

Миокард желудочка - 0,8-0,9 м/с

Нарушение проведения сердца приводит к развитию блокад - синусной, атривентрикулярной, пучка Гисса и его ножек. Синусный узел может выключится. Включится ли атривентрикулярный узел как водитель ритма? Синусные блокады встречаются редко. Больше в атриовентрикулярных узлах. Удлинение задержки(больше 0,21с) возбуждение доходит до желудочка, хоть и замедленно. Выпадение отдельных возбуждений, которые возникают в синусном узле (Например, из трёх доходит только два - это вторая степень блокады. Третья степень блокады, когда предсердия и желудочки работают несогласованно. Блокада ножек и пучка - это блокада желудочков. Чаще встречаются блокады ножек пучка Гисса и соответственно один желудочек запаздывает за другим).

Сократимость. Кардиомиоциты включают фибриллы, а структурной единицей саркомеры. Есть продольные трубочки и Т трубочки наружной мембраны, котоыре входят внутрь на уровне мембраны я. Они широкие. Сократительная функция кардиомиоцитов связана с белками миозином и актином. На тонких актиновых белках - система тропонин и тропомиозин. Это не дает головкам миозин сцепляется с головками миозина. Снятие блокировки — ионами кальция. По т трубочкам открываются кальцевые каналы. Повышение кальция в саркоплазме снимает тормозной эффект актина и миозина. Мостики миозина перемещают тонике нити к центру. Миокард подчиняется в сократительной функции 2м законам - все или ничего. Сила сокращения зависит от исходной длины кардиомиоцитов - Франк Старалинг. Если кардиомиоциты предварительно растянуты, то они отвечают большей силой сокращения. Растяжение зависит от наполнения кровью. Чем больше- тем сильней. Этот закон формулируется как «систола — есть функция диастолы». Это важный приспособительный механизм, который синхронизирует работу правого и левого желудочка.

Особенности системы кровообращения:

1)замкнутость сосудистого русла, в который включен насосный орган сердце;

2)эластичность сосудистой стенки (эластичность артерий больше эластичности вен, однако емкость вен превышает емкость артерий);

3)разветвленность кровеносных сосудов (отличие от других гидродинамических систем);

4)разнообразие диаметра сосудов (диаметр аорты равен 1,5 см, а капилляров 8-10 мкм);

5)в сосудистой системе циркулирует жидкость-кровь, вязкость которой в 5 раз выше вязкости воды.

Типы кровеносных сосудов:

1)магистральные сосуды эластического типа: аорта, крупные артерии, отходящие от нее; в стенке много эластических и мало мышечных элементов, вследствие этого данные сосуды обладают эластичностью и растяжимостью; задача данных сосудов состоит в преобразовании пульсирующего кровотока в плавный и непрерывный;

2)сосуды сопротивления или резистивные сосуды- сосуды мышечного типа, в стенке высокое содержание гладкомышечных элементов, сопротивление которых меняет просвет сосудов, а следовательно и сопротивление кровотоку;

3)обменные сосуды или «обменные герои» представлены капиллярами, которые обеспечивают протекание процесса обмена веществ, выполнение дыхательной функции между кровью и клетками; количество функционирующих капилляров зависит от функциональной и метаболической активности в тканях;

4)сосуды шунта или артериовенулярные анастомозы напрямую связывают артериоллы и венулы; если данные шунты открыты, то кровь сбрасывается из артериолл в венулы, минуя капилляры, если же закрыты, то кровь идет из артериолл в венулы через капилляры;

5)емкостные сосуды представлены венами, для которых характерна большая растяжимость, но малая эластичность, данные сосуды вмещают до 70 % всей крови, существенно влияют на величину венозного возврата крови к сердцу.

Движение крови подчиняется законам гидродинамики, а именно происходит из области большего давления в область меньшего.

Количество крови, протекающей через сосуд прямо пропорционально разнице давлений и обратно пропорционально сопротивлению:

Q=(p1—p2) /R= ∆p/R,

где Q-кровоток, p-давление, R-сопротивление;

Аналог закона Ома для участка электрической цепи:

где I-сила тока, E-напряжение, R-сопротивление.

Сопротивление связано с трением частиц крови о стенки сосудов, что обозначается как внешнее трение, также существует и трение между частицами- внутреннее трение или вязкость.

Закон Гагена Пуазеля:

где η- вязкость, l- длина сосуда, r- радиус сосуда.

Q=∆pπr 4 /8ηl.

Этими параметрами определяется количество протекающей крови через поперечное сечение сосудистого русла.

Для движения крови имеет значение не абсолютные величины давлений, а разница давлений:

р1=100 мм рт ст, р2=10 мм рт ст, Q =10 мл/с;

р1=500 мм рт ст, р2=410 мм РТ ст, Q=10 мл/с.

Физическая величина сопротивления кровотока выражается в [Дин*с/см 5 ]. Были введены относительные единицы сопротивления:

Если р= 90 мм рт ст, Q= 90 мл/с, то R= 1 - единица сопротивления.

Величина сопротивления в сосудистом русле зависит от расположения элементов сосудов.

Если рассматриваются величины сопротивлений, возникающих в последовательно соединенных сосудах, то общее сопротивление будет равно сумме сосудов в отдельных сосудах:

В сосудистой системе кровоснабжение осуществляется за счет ветвей, отходящих от аорты и идущих параллельно:

R=1/R1 + 1/R2+…+ 1/Rn,

то есть общее сопротивление равно сумме величин обратных сопротивлению в каждом элементе.

Физиологические процессы подчиняются общим физическим законам.

Сердечный выброс.

Сердечный выброс- это количество крови, выталкиваемое сердцем в единицу времени. Различают:

Систолический (за время 1 систолы);

Минутный объем крови (или МОК) — определяется двумя параметрами, а именно систолическим объемом и частотой сердечных сокращений.

Величина систолического объема в покое составляет 65-70 мл, и является одинаковой для правого и левого желудочков. В покое желудочки выталкивают 70 % конечного диастолического объема, и к концу систолы в желудочках остается 60-70 мл крови.

V сист ср.=70мл, ν ср=70 уд/мин,

V мин=V сист * ν= 4900 мл в мин

Непосредственно определить V мин трудно, для этого используется инвазивный метод.

Был предложен косвенный метод на основе газообмена.

Метод Фика (метод определения МОК).

МОК= О2 мл/мин / А - V(О2) мл/л крови.

  1. Потребление О2 за минуту составляет 300 мл;
  2. Содержание О2 в артериальной крови = 20 об %;
  3. Содержание О2 в венозной крови = 14 об %;
  4. Артерио-венозная разница по кислороду = 6 об % или 60 мл крови.

МОК= 300 мл/60мл/л = 5л.

Величина систолического объема может быть определена как V мин/ν. Систолический объем зависит от силы сокращений миокарда желудочков, от величины наполнения кровью желудочков в диастолу.

Закон Франка-Старлинга устанавливает. что систола - функция диастолы.

Величина минутного объема определяется изменением ν и систолическим объемом.

При физической нагрузке величина минутного объема может возрастать до 25-30 л, систолический объем возрастает до 150 мл, ν достигает 180-200 ударов в минуту.

Реакции физически тренированных людей касаются прежде всего изменения систолического объема, нетренированных - частоты, у детей лишь за счет частоты.

Регуляция деятельности сердца

Другое с раздела: ▼

Функция сердца, есть сила и частота его сокращений, изменяется в зависимости от состояния организма и условий, в которых организм находится. Обеспечиваются эти изменения регуляторными механизмами, которые можно разделить на миогенные (связанные с физиологическими свойствами собственно структур серйя), гуморальные (влияние различных физиологически активных веществ, производятся непосредственно в сердце и организме) и нервные (осуществляются с помощью интра-и экстракардиальные системы).

Миогенные механизмы. Закон Франка-Старлинга. Благодаря свойствам сократительных миофиламенты миокард может изменять силу сокращения зависимости от степени наполнения полостей сердца. При постоянной ЧСС сила сердечных сокращений увеличивается с ростом венозного притока крови. Это наблюдается, например, при росте конечно-диастолического объема с 130 до 180 мл.

Предполагают, что в основе механизма Франка-Старлинга лежит первоначальное расположение актиновых и миозинових филаментов в саркомири. Скольжение нитей друг относительно друга осуществляется при взаимном перекрытии благодаря создаваемых поперечным мостикам. Если эти нити растянуты, то количество возможных «шагов» возрастет, следовательно, увеличится и сила следующего сокращения (положительный инотропный эффект). Но дальнейшее растяжение может привести к тому, что актиновые И миозиновые нити уже не будут перекрываться и не смогут образовать мостики для сокращения. Поэтому

чрезмерное растяжение мышечных волокон приведет к уменьшению силы сокращения, т.е. отрицательный инотропный эффект. Это наблюдается при увеличении конечно-диастолического объема выше 180 мл.

Механизм Франка-Старлинга обеспечивает увеличение УО при повышении венозного притока крови в соответствующий отдел (правый или левый) сердца. Он способствует усилению сердечных сокращений при возрастании сопротивления выброса крови в сосуды. Последнее обстоятельство может быть следствием повышения диастолического давления в аорте (легочной артерии) или сужение этих сосудов (коарктации). В данном случае можно представить такую. последовательность развития изменений. Повышение давления в аорте приводит к резкому увеличению коронарного кровотока, при котором механически растягиваются кардиомиоциты и, согласно механизму Франка-Старлинга, в их усиленного сокращения, повышение УО крови. Это явление носит название эффекта Анрепа.

Механизм Франка-Старлинга и эффект Анрепа обеспечивает авторегуляции функции сердца при многих физиологических состояниях (например, при физической нагрузке). В таком случае МОК может быть увеличен на 13-15 л / мин.

Хроноинотропия. Зависимость силы сокращения сердца от частоты его деятельности (лестница Боудича) является фундаментальным свойством миокарда. Сердце человека и большинства животных, за исключением крыс в ответ на повышение ритма реагирует увеличением силы сокращений и, наоборот, с уменьшением ритма сила сокращений падает. Механизм этого феномена связан с накоплением или падением в миоплазми концентрации Са2 +, а также увеличением или уменьшением количества поперечных мостиков, что приводит положительные или

негативные эффекты сердца.

Гуморальные механизмы. Влияние инкреторной функции сердца.

В сердце, особенно в его предсердиях, образуются биологически активные соединения (дигиталисоподибни факторы, катехоламины, продукты арахидоновой кислоты) и гормоны, в частности, предсердный натрийуретический и ренин-ангиотензин соединения. Оба гормоны участвуют в регуляции сократительной активности миокарда, МОК. Последний из них имеет специфические рецепторы, при воздействии на которые развивается гипертрофия миокарда.

Влияние ионов на функцию сердца. Подавляющее большинство регуляторных влияний на функциональное состояние сердца связана с мембранными механизмами проводящей системы и кардиомиоцитов. Мембраны прежде всего отвечают за проникновение ионов. Состояние мембранных каналов, переносчиков, а также насосов, использующих энергию АТФ, влияет на концентрацию ионов в миоплазми. Существенная роль в трансмембранному обмене ионами принадлежит концентрационном градиента, который определяется прежде всего концентрацией их в крови, а следовательно, и в межклеточной жидкости. Увеличение внеклеточного концентрации ионов приводит к росту пассивного поступления их в кардиоциты, снижение — к «вымыванию». Вполне вероятно, что кардиогенный эффект ионов послужил одним из оснований для формирования в процессе эволюции сложных систем регуляции, что обеспечивает их гомеостаз в крови.

Влияние Са2 +. Если содержание Са2 + в крови снижается, то возбудимость и сократимость сердца уменьшается, а при увеличении, напротив, повышается. Механизм этого явления связан с уровнем Са2 + в клетках проводящей системы и рабочего миокарда, в зависимости от которого развиваются положительные или отрицательные эффекты деятельности сердца.

Влияние К +. При уменьшении концентрации К + (менее 4 ммоль / л) в крови возрастают пейсмекерного активность и ЧСС. При увеличении его концентрации эти показатели уменьшаются. Двукратное повышение содержания К + в крови может привести к остановке сердца. Этот эффект используется в клинической практике для остановки сердца во время проведения на ньрму хирургических операций. Механизм этих изменений связан с уменьшением соотношения между внешним и внутриклеточным к + повышением проницаемости мембран до К + снижением потенциала покоя.

Влияние Na +. Снижение содержания Na + в крови может привести к остановке сердца. В основе этого влияния лежит нарушение градиентного трансмембранного транспорта Na +, Са2 + и сочетания возбудимости с сократимостью. Незначительное повышение уровня Na + благодаря Na + -, Са2 +-обменнике приведет к увеличению сократимости миокарда.

Влияние гормонов. Ряд настоящих (адреналин, норадреналин, глюкагон, инсулин и др.). И тканевых (ангиотензин II, гистамин, серотонин и др.). Гормонов стимулируют функцию сердца. Механизм действия, например, норадреналина, серотонина и гистамина связан с соответствующими рецепторами: p-адренорецепторами, Нг-гистаминовых и серотониновых. В результате их взаимодействия увеличиваются концентрации аденилатциклазы, цАМФ, активизируются кальциевые каналы, накапливается внутриклеточный Са2 +, что и обусловливает итоге улучшения деятельности сердца.

Кроме этого, гормоны, которые активизируют аденилатциклазу, образование цАМФ, могут действовать на миокард косвенно, через усиление расщепления гликогена и окисления глюкозы. Интенсифицируя образования АТФ, такие гормоны, как адреналин и глюкагон, также становятся причиной положительной игиотропнои реакции.

Напротив, стимуляция образования цГМФ инактивирует Са2 +-каналы, что обуславливает негативное влияние на функции сердца. Таким образом действуют на кардиомиоциты медиатор парасимпатической нервной системы ацетилхолин, а также брадикинин. Но, кроме этого, ацетилхолин? К +-проницаемость и тем самым предопределяет гиперполяризацию. Последствием этих влияний является снижение скорости деполяризации, сокращение продолжительности ПД, снижение силы сокращения.

Влияние метаболитов. Для нормального функционирования сердца нужна энергия. Поэтому все изменения коронарного кровотока, трофической функции крови сказываются на работе миокарда.

При гипоксии, внутриклеточном ацидозе блокируются на мембране кардиомиоцитов медленные Са2 +-каналы, подавляя тем самым сократительную активность. В этом эффекте есть элементы самозащиты сердца, поскольку не потрачена на сокращение АТФ обеспечивает жизнеспособность кардиомиоцитов. И если гипоксия будет ликвидирована, то сохраненный кардиомиоцит начнет Знобь выполнять нагнетательную функцию.

Увеличение в сердце концентраций креатинфосфата, свободных жирных кислот, молочной кислоты как источника энергии сопровождается повышением деятельности миокарда. Раскладывая молочную кислоту, сердце не только получает дополнительную энергию, но и способствует поддержанию постоянной рН крови.

Сердечная мышца обеспечивает жизнедеятельность всех тканей, клеток и органов. Транспорт веществ в организме осуществляется благодаря постоянной циркуляции крови; она же обеспечивает и поддержание гомеостаза.

Строение сердечной мышцы

Сердце представлено двумя половинами - левой и правой, каждая из которых состоит из предсердья и желудочка. Левая половина сердца нагнетает а правая - венозную. Поэтому сердечная мышца левой половины значительно толще правой. Мышцы предсердий и желудочков разделены фиброзными кольцами, которые имеют атриовентрикулярные клапаны: двухстворчатый (левая половина сердца) и трехстворчатый (правая половина сердца). Данные клапаны во время сокращения сердца предупреждают возврат крови в предсердье. На выходе аорты и легочной артерии размещаются полумесячные клапаны, которые предупреждают возврат крови в желудочки во время общей диастолы сердца.

Сердечная мышца принадлежит к поперечнополосатой Поэтому эта мышечная ткань имеет те же свойства, что и скелетные мышцы. Мышечное волокно состоит из миофибрилл, саркоплазмы и сарколеммы.

Благодаря сердцу обеспечивается циркуляция крови по кровеносным сосудам. Ритмическое сокращение мышц предсердий и желудочков (систола) чередуется с ее расслаблением (диастола). Последовательная смена систолы и диастолы составляет цикл Сердечная мышца работает ритмично, что обеспечивается системой, проводящей возбуждение в разных отделах сердца

Физиологические свойства сердечной мышцы

Возбудимость миокарда — это способность ее реагировать на действия электрических, механических, термических и химических раздражителей. Возбуждение и сокращение сердечной мышцы наступает тогда, когда раздражитель достигает пороговой силы. Раздражения слабее порогового не эффективны, а сверхпороговые не изменяют силы сокращения миокарда.

Возбуждение мышечной ткани сердца сопровождается появлением Он укорачивается при учащении и удлиняется при замедлении сокращений сердца.

Возбужденная сердечная мышца на короткое время утрачивает способность отвечать на дополнительные раздражения или импульсы, поступающие из очага автоматии. Такая невозбудимость называется рефрактерностью. Сильные раздражители, которые действуют на мышцу в период относительной рефрактерности, вызывают внеочередное сокращение сердца — так называемую экстрасистолу.

Сократимость миокарда имеет особенности в сравнении со скелетной мышечной тканью. Возбуждение и сокращение в сердечной мышце длятся дольше, чем в скелетной. В сердечной мышце преобладают аэробные процессы ресинтеза Во время диастолы происходит автоматическое изменение одновременно в нескольких клетках в разных частях узла. Отсюда возбуждение распространяется по мускулатуре предсердий и достигает атриовентрикулярного узла, который считают центром автоматии ІІ порядка. Если выключить синоатриальный узел (наложением лигатуры, охлаждением, ядами), то через некоторое время желудочки начнут сокращаться в более редком ритме под влиянием импульсов, возникающих в атриовентрикулярном узле.

Проведение возбуждения в разных отделах сердца неодинаковое. Следует сказать, что у теплокровных животных скорость проведения возбуждения по мышечным волокнам предсердий составляет около 1,0 м/с; в проводящей системе желудочков до 4,2 м/с; в миокарде желудочков до 0,9 м/с.

Характерной особенностью проведения возбуждения в сердечной мышце является то, что потенциал действия, возникший в одном участке мышечной ткани, распространяется на соседние участки.

Сердечная мышца, как и всякая другая мышца, обладает рядом физиологических свойств: возбудимостью, проводимостью, сократимостью, рефрактерностью и автоматией.

· Возбудимость — это способность кардиомиоцитов и всей сердечной мышцы возбуждается при действии на нее механических, химических, электрических и других раздражителей, что находит свое применение в случаях внезапной остановки сердца. Особенностью возбудимости сердечной мышцы является то, что она подчиняется закону “все — или ничего”. Это значит, что на слабый, допороговой силы раздражитель сердечная мышца не отвечает, (т.е. не возбуждается и не сокращается) (“ничего”), а на раздражитель пороговой, достаточной для возбуждения силы сердечная мышца реагирует своим максимальным сокращением (“все”) и при дальнейшем увеличении силы раздражения ответная реакция со стороны сердца не изменяется. Это связано с особенностями строения миокарда и быстрым распространением по нему возбуждения через вставочные диски — нексусы и анастомозы мышечных волокон. Таким образом, сила сердечных сокращений в отличие от скелетных мышц не зависит от силы раздражения. Однако этот закон, открытый Боудичем, в значительной степени условен, так как на проявление данного феномена влияют определенные условия — температура, степень утомления, растяжимость мышц и ряд других факторов.

Стоит добавить, что он применим только по отношению к действию на сердце искусственного раздражителя. Боудич в эксперименте с вырезанной полоской миокарда обнаружил, что если ее ритмически раздражать электрическими импульсами одинаковой силы, то на каждое последующее раздражение мышца ответит большим сокращением до ее максимальной величины. Это явление получило название “лестницы Боудича”.

· Проводимость — это способность сердца проводить возбуждение. Скорость проведения возбуждения в рабочем миокарде разных отделов сердца неодинакова. По миокарду предсердий возбуждение распространяется со скоростью 0,8-1 м/с, по миокарду желудочков — 0,8-0,9 м/с. В атриовентрикулярной области на участке длиной и шириной в 1 мм проведение возбуждения замедляется до 0,02-0,05 м/с, что почти в 20-50 раз медленнее, чем в предсердиях. В результате этой задержки возбуждение желудочков начинается на 0,12-0,18 с позже начала возбуждения предсердий. Существует несколько гипотез, объясняющих механизм атриовентрикулярной задержки, но этот вопрос требует своего дальнейшего изучения. Однако эта задержка имеет большой биологический смысл — она обеспечивает согласованную работу предсердий и желудочков.


· Рефрактерность — состояние невозбудимости сердечной мышцы. Степень возбудимости сердечной мышцы в процессе сердечного цикла меняется. Во время возбуждения она теряет способность реагировать на новый импульс раздражения. Такое состояние полной невозбудимости сердечной мышцы называется абсолютной рефрактерностью и занимает практически все время систолы . По окончании абсолютной рефрактерности к началу диастолы возбудимость постепенно возвращается к норме — относительная рефрактерность . В это время (в середине или в конце диастолы) сердечная мышца способна отвечать на более сильное раздражение внеочередным сокращением — экстрасистолой. За желудочковой экстрасистолой, когда внеочередной импульс зарождается в атриовентрикулярном узле, наступает удлиненная (компенсаторная) пауза (рис.9.).

Рис. 9. Экстрасистола а и удлиненная пауза б

Она возникает в результате того, что очередной импульс, который идет от синусного узла, поступает к желудочкам во время их абсолютной рефрактерности, вызванной экстрасистолой и этот импульс или одно сокращение сердца выпадает. После компенсаторной паузы восстанавливается нормальный ритм сокращений сердца. Если дополнительный импульс возникает в синоатриальном узле, то происходит внеочередной сердечный цикл, но без компенсаторной паузы. Пауза в этих случаях будет даже короче обычной. За периодом относительной рефрактерности наступает состояние повышенной возбудимости сердечной мышцы (экзальтационный период) когда мышца возбуждается и на слабый раздражитель. Период рефрактерности сердечной мышцы продолжается более длительное время, чем в скелетных мышцах, поэтому сердечная мышца не способна к длительному титаническому сокращению.

Иногда отмечаются патологические режимы распространения возбуждения, при которых предсердия и желудочки возбуждаются самопроизвольно с высокой частотой и сокращаются неодновременно. Если эти возбуждения периодичны, то такую аритмию называют трепетанием, если они неритмичны —мерцанием. Как трепетание, так и мерцание желудочков вызывает наибольшую опасность для жизни.

· Сократимость . Сократимость сердечной мышцы имеет свои особенности. Сила сердечных сокращений зависит от исходной длины мышечных волокон (закон Франка-Старлинга). Чем больше притекает к сердцу крови, тем более будут растянуты его волокна и тем большая будет сила сердечных сокращений. Это имеет большое приспособительное значение, обеспечивающее более полное опорожнение полостей сердца от крови, что поддерживает равновесие количества притекающей к сердцу, и оттекающей от него крови. Здоровое сердце уже при небольшом растяжении отвечает усиленным сокращением, в то время как слабое сердце даже при значительном растяжении лишь немного увеличивает силу своего сокращения, а отток крови осуществляется за счет учащения ритма сокращений сердца. Кроме того, если по каким-либо причинам произошло чрезмерное сверх физиолочески допустимых границ растяжение сердечных волокон, то сила последующих сокращений уже не увеличивается, а ослабляется.

Сила и частота сердечных сокращений меняется и под действием различных нервно-гуморальных факторов без изменения длины мышечных волокон.

Особенностями сократительной деятельности миокарда является то, что для поддержания этой способности необходим кальций. В безкальциевой среде сердце не сокращается. Поставщиком энергии для сокращений сердца являются макроэргические соединения (АТФ и КФ). В сердечной мышце энергия (в отличие от скелетных мышц) выделяется, главным образом, в аэробную фазу, поэтому механическая активность миокарда линейно связана со скоростью поглощения кислорода. При недостатке кислорода (гипоксемия) активируются анаэробные процессы энергетики, но они только частично компенсируют недостающую энергию. Недостаток кислорода отрицательно влияет и на содержание в миокарде АТФ и КФ.

В сердечной мышце, имеется так называемая атипическая ткань, образующая проводящую систему сердца (рис. 10.).

Эта ткань имеет более тонкие миофибриллы с меньшей поперечной исчерченностью. Атипические миоциты более богаты саркоплазмой. Ткань проводящей системы сердца более возбудима и обладает резко выраженной способностью к проведению возбуждения. В некоторых местах миоциты этой ткани образуют скопления или узлы. Первый узел располагается под эпикардом в стенке правого предсердия, вблизи впадения полых вен — синоатриальный узел .

Рис. 10. Проводящая система сердца:

а - синоатриальный узел; б - предсердно-желудочковый узел; в - пучок Гиса; г - волокна Пуркинье.

Второй узел располагается под эпикардом стенки правого предсердия в области атриовентрикулярной перегородки, разделяющей правое предсердие от желудочка, и называется предсердно-желудочковым (атриовентрикулярным) узлом . От него отходит пучок Гиса, разделяющийся на правую и левую ножки, которые по отдельности идут в соответствующие желудочки, где они распадаются на волокна Пуркинье. Проводящая система сердца имеет непосредственное отношение к автоматии сердца.

Автоматия сердца — это способность ритмически сокращаться под влиянием импульсов, зарождающихся в самом сердце без каких-либо раздражений. Автоматию сердца можно наблюдать на удаленном, и помещенном в раствор Рингера, сердце лягушки. Явление автоматии сердца было известно очень давно. Его наблюдали Аристотель, Гарвей, Леонардо Да Винчи.

Долгое время в объяснении природы автоматии существовало две теории — нейрогенная и миогенная. Представители первой теории считали, что в основе автоматии лежат нервные структуры сердца, а представители второй теории связывали автоматию со способностью к ней мышечных элементов.

Взгляды на автоматию получили новые направления в связи с открытием проводящей системы сердца. В настоящее время способность к автоматической генерации импульсов в настоящее время связывают с особыми Р-клетками, входящими в состав синоатриального узла. Многочисленными и разнообразными опытами (Станниус—методом наложения лигатур, Гаскел - ограниченным охлаждением и нагреванием разных участков сердца), затем исследованиями с регистрацией электрических потенциалов было доказано, что главным центром автоматии 1 порядка, датчиком, водителем (пейсмекером) ритма сердечных сокращений является синоатриальный узел, так как в Р-клетках этого узла отмечается наибольшая скорость диастолической деполяризации и генерации потенциала действия, связанного с изменением ионной проницаемости клеточных мембран.

По удалению от этого узла способность проводящей системы сердца к автоматии уменьшается (закон градиента убывающей автоматии, открытый Гаскеллом). Исходя из этого закона, атриовентрикулярный узел обладает меньшей способностью к автоматии (центр автоматии второго порядка), а остальная часть проводящей системы является центром автоматии третьего порядка.

В нормальных условиях функционирует только автоматия синоатриального узла, а автоматия других отделов подавлена более высокой частотой его возбуждений. Это было доказано Станниусом методом наложения лигатур на разные отделы сердца лягушки. Так, если у лягушки наложить первую лигатуру, отделив венозный синус от предсердий, то сокращения сердца временно прекратятся. Затем через некоторое время или сразу после наложения второй лигатуры на предсердно-желудочковый узел начнутся сокращения предсердий или желудочка (в зависимости от того, как ляжет лигатура и куда отойдет узел), но во всех случаях эти сокращения будут иметь более редкий ритм ввиду меньшей способности к автоматии атриовентрикулярного узла.

Таким образом, импульсы вызывающие сокращения сердца, первоначально зарождаются в синоатриальном узле. Возбуждение от него распространяется по предсердиям и доходит до атриовентрикулярного узла, далее через него по пучку Гиса к желудочкам. При этом возбуждение от синоатриального узла к атриовентрикулярному по предсердиям передается не радиально, как это представлялось раньше, а по наиболее благоприятному, предпочтительному пути, т.е. по клеткам очень сходным с клетками Пуркинье.

Волокна проводящей системы сердца своими многочисленными разветвлениями соединяются с волокнами рабочего миокарда. В области их контакта происходит задержка передачи возбуждения в 30 мс, что имеет определенное функциональное значение. Одиночный импульс, пришедший раньше других по отдельному волокну проводящей системы, может вообще не пройти на рабочий миокард, а при одновременном приходе нескольких импульсов они суммируются, что облегчает их переход на миокард.

Сердце представляет собой полый орган. Его размер примерно с кулак человека. Сердечная мышца формирует стенки органа. В нем присутствует перегородка, разделяющая его на левую и правую половины. В каждой из них сеть желудочек и предсердие. Направление движения крови в органе контролируется посредством клапанов. Далее рассмотрим подробнее свойства сердечной мышцы.

Общие сведения

Сердечная мышца - миокард - составляет основную часть массы органа. Она состоит из трех типов ткани. В частности, выделяют: атипический миокард проводящей системы, волокна предсердия и желудочков. Размеренное и координированное сокращение сердечной мышцы обеспечивается проводящей системой.

Строение

Сердечная мышца отличается сетчатой структурой. Она формируется из волокон, переплетенных в сеть. Связи между волокнами устанавливаются за счет присутствия боковых перемычек. Таким образом, сеть представлена в виде узкопетлистого синцития. Между волокнами сердечной мышцы присутствует соединительная ткань. Она отличается рыхлой структурой. Кроме этого, волокна обвиты густой сетью капилляров.

Свойства сердечной мышцы

В структуре присутствуют вставочные диски, представленные в виде мембран, отделяющих клетки волокон друг от друга. Здесь следует отметить важные особенности сердечной мышцы. Отдельные кардиомиоциты, присутствующие в структуре в большом количестве, соединены друг с другом параллельно и последовательно. Клеточные мембраны сливаются так, что формируют щелевые контакты высокой проницаемости. Через них беспрепятственно диффундируют ионы. Таким образом, одна из особенностей миокарда состоит в наличии свободного перемещения ионов по внутриклеточной жидкости по ходу всего миокардиального волокна. Это обеспечивает беспрепятственное распределение потенциалов действия от одной клетки к другой сквозь вставочные диски. Из этого следует, что сердечная мышца - это функциональное объединение огромного количества клеток, имеющих тесную взаимосвязь друг с другом. Она настолько сильна, что при возбуждении только одной клетки провоцирует распространение потенциала на все остальные элементы.

Миокардиальные синцития

В сердце их два: предсердный и желудочковый. Все отделы сердца отделены друг от друга фиброзными перегородками с отверстиями, снабженными клапанами. Непосредственно через ткань стенок возбуждение от предсердия к желудочку перейти не может. Передача осуществляется посредством специального атриовентрикулярного пучка. Его диаметр - несколько миллиметров. Состоит пучок из волокон проводящей структуры органа. Присутствие в сердце двух синцитий способствует тому, что предсердия сокращаются раньше желудочков. Это, в свою очередь, имеет важнейшее значение для обеспечения эффективной насосной деятельности органа.

Болезни миокарда

Работа сердечной мышцы может нарушаться вследствие различных патологий. В зависимости от провоцирующего фактора, выделяют специфические и идиопатические кардиомиопатии. Болезни сердца могут быть также врожденными и приобретенными. Существует еще одна классификация, в соответствии с которой различают рестриктивную, дилатационную, конгестивную и гипертрофическую кардиомиопатии. Рассмотрим их вкратце.

Гипертрофическая кардиомиопатия

На сегодняшний день специалистами выявлены мутации генов, провоцирующие данную форму патологии. Для гипертрофической кардиомиопатии характерно утолщение миокарда и изменение его структуры. На фоне патологии мышечные волокна увеличиваются в размерах, "скручиваются", приобретая странные формы. Первые симптомы заболевания отмечаются в детском возрасте. Основными признаками гипертрофической кардиомиопатии считаются болезненность в груди и одышка. Также наблюдается неравномерность сердечного ритма, на ЭКГ обнаруживаются изменения в сердечной мышце.

Конгестивная форма

Это достаточно распространенный тип кардиомиопатии. Как правило, заболевание возникает у мужчин. Распознать патологию можно по признакам сердечной недостаточности и нарушениям в сердечном ритме. У некоторых пациентов отмечается кровохарканье. Патологию также сопровождает боль в районе сердца.

Дилатационная кардиомиопатия

Эта форма заболевания проявляется в виде резкого расширения во всех камерах сердца и сопровождается снижением сократительной способности левого желудочка. Как правило, дилатационная кардиомиопатия возникает в сочетании с гипертонической болезнью, ИБС, стенозом в аортальном отверстии.

Рестриктивная форма

Кардиомиопатия этого типа диагностируется крайне редко. Причиной патологии является воспалительный процесс в сердечной мышце и осложнения после вмешательства на клапанах. На фоне заболевания происходит перерождение миокарда и его оболочек в соединительную ткань, отмечается замедленное наполнение желудочков. У пациента отмечается одышка, быстрая утомляемость, пороки клапанов и сердечная недостаточность. Крайне опасной рестриктивная форма считается для детей.

Как укрепить сердечную мышцу?

Существуют различные способы это сделать. Мероприятия включают в себя коррекцию режима дня и питания, упражнения. В качестве профилактики после консультации с врачом можно начать принимать ряд препаратов. Кроме этого, есть и народные методы укрепления миокарда.

Физическая активность

Она должна быть умеренной. Физическая активность должна стать неотъемлемым элементом жизни любого человека. При этом нагрузка должна быть адекватной. Не стоит перегружать сердце и истощать организм. Оптимальным вариантом считаются спортивная ходьба, плавание, езда на велосипеде. Упражнения рекомендуется проводить на свежем воздухе.

Ходьба

Она превосходно подходит не только для укрепления сердца, но и для оздоровления всего организма. При ходьбе задействована практически вся мускулатура человека. При этом сердце дополнительно получает умеренную нагрузку. По возможности, особенно в молодом возрасте, стоит отказаться от лифта и преодолевать высоту пешком.

Образ жизни

Укрепление сердечной мышцы невозможно без корректировки режима дня. Для улучшения деятельности миокарда необходимо отказаться от курения, дестабилизирующего давление и провоцирующего сужение просвета в сосудах. Кардиологи также не рекомендуют увлекаться баней и сауной, поскольку пребывание в парной существенно увеличивает сердечные нагрузки. Необходимо также позаботиться и о нормальном сне. Спать следует ложиться вовремя и отдыхать достаточное количество часов.

Диета

Одним из важнейших мероприятий в вопросе укрепления миокарда считается рациональное питание. Следует ограничить количество соленой и жирной пищи. В продуктах должны присутствовать:

  • Магний (бобовые, арбузы, орехи, гречка).
  • Калий (какао, изюм, виноград, абрикосы, кабачки).
  • Витамины Р и С (клубника, черная смородина, перец (сладкий), яблоки, апельсины).
  • Йод (капуста, творог, свекла, морепродукты).

Негативное воздействие на деятельность миокарда оказывает холестерин в высоких концентрациях.

Психоэмоциональное состояние

Укрепление сердечной мышцы может осложняться различными неразрешенными проблемами личного либо рабочего характера. Они могут спровоцировать перепады давления и нарушения ритма. Следует по возможности избегать стрессовых ситуаций.

Препараты

Существует несколько средств, способствующих укреплению миокарда. К ним, в частности, относят такие препараты, как:

  • "Рибоксин". Его действие направлено на стабилизацию ритма, усиление питания мышцы и коронарных сосудов.
  • "Аспаркам". Этот препарат представляет собой магниево-калиевый комплекс. Благодаря приему средства нормализуется электролитный обмен, устраняются признаки аритмии.
  • Родиола розовая. Это средство улучшает сократительную функцию миокарда. При приеме данного препарата следует соблюдать осторожность, поскольку он обладает способностью к возбуждению нервной системы.


mob_info