Условие плавания тел в жидкости. Архимедова сила

Мы знаем, что на любое тело, находящееся в жидкости, действуют две силы, направленные в противоположные стороны: сила тяжести и архимедова сила. Сила тяжести равна весу тела и направлена вниз, архимедова же сила зависит от плотности жидкости и направлена вверх. Как физика объясняет плавание тел , и каковы условия плавания тел на поверхности и в толще воды?

Условие плавания тел

Согласно закону Архимеда условие плавания тел следующее: если сила тяжести равна архимедовой силе, то тело может находиться в равновесии в любом месте жидкости, то есть плавать в ее толще. Если сила тяжести меньше архимедовой силы, то тело будет подниматься из жидкости, то есть всплывать. В случае же, когда вес тела больше выталкивающей его архимедовой силы, то тело будет опускаться на дно, то есть тонуть. Выталкивающая сила зависит от плотности жидкости. А вот будет тело плавать или тонуть зависит от плотности тела , так как его плотность увеличит его вес. Если плотность тела будет выше плотности воды, то тело утонет. Как же быть в таком случае?

Плотность сухого дерева за счет полостей, наполненных воздухом, меньше плотности воды и дерево может плавать на поверхности. А вот железо и многие другие вещества значительно плотнее воды. Как же возможно строить корабли из металла и перевозить различные грузы по воде в таком случае? А для этого человек придумал небольшую хитрость. Корпус корабля, который погружается в воду, делают объемным, а внутри этот корабль имеет большие полости, заполненные воздухом, которые сильно уменьшают общую плотность корабля. Объем вытесняемой кораблем воды, таким образом, сильно увеличивают, увеличивая выталкивающую его силу, а плотность корабля в сумме делают меньше плотности воды, дабы корабль мог плавать на поверхности. Поэтому каждый корабль имеет определенный предел массы грузов, который он может увезти. Это называется водоизмещением судна.

Различают порожнее водоизмещение - это масса самого судна, и полное водоизмещение - это порожнее водоизмещение плюс общая масса экипажа, всей оснастки, запасов, топлива и грузов, которую может нормально увезти данное судно без риска утонуть при относительно спокойной погоде.

Плотность тела у организмов, населяющих водную среду, близка к плотности воды. Благодаря этому они могут находиться в толще воды и плавать благодаря подаренным им природой приспособлениям - ластам, плавникам и пр. В передвижении рыб большую роль играет специальный орган - плавательный пузырь. Рыба может менять объем этого пузыря и количество воздуха в нем, благодаря чему ее суммарная плотность может меняться, и рыба может плавать на различной глубине, не испытывая неудобств.

Плотность человеческого тела немного больше плотности воды. Однако, человек, когда у него в легких содержится некоторое количество воздуха, тоже может спокойно держаться на поверхности воды. Если же ради эксперимента, находясь в воде, вы выдохните весь воздух из легких, вы медленно начнете опускаться на дно. Поэтому всегда помните, что плавать не страшно, опасно наглотаться воды и впустить ее в легкие, что и является наиболее частой причиной трагедий на воде.

ПЛАВАНИЕ ТЕЛ

ПЛАВАНИЕ ТЕЛ

Состояние равновесия тв. тела, частично или полностью погружённого в (или газ). Осн. задача теории П. т.- определение положений равновесия тела, погружённого в жидкость, выяснение условий устойчивости равновесия. Простейшие условия П. т. указывает Архимеда закон.

Осн. понятия теории П. т. (рис. 1):

1) водоизмещение тела - жидкости, вытесняемой телом в состоянии равновесия (совпадает с весом тела);

2) плоскость возможной грузовой ватерлинии - всякая плоскость аb, отсекающая от тела объём, вес жидкости в к-ром равен водоизмещению тела;

3) грузовых ватерлиний - поверхность I, в каждой точке к-рой касательная плоскость явл. плоскостью возможной грузовой ватерлинии;

4) центр водоизмещения (или центр величины) - А объёма, отсекаемого плоскостью возможной грузовой ватерлинии;

5) поверхность центров водоизмещения - поверхность II, являющаяся геометрич. местом центров водоизмещения.

Рис. 1. ab, a1b1, а2b2 - плоскости возможной грузовой ватерлинии; А, А1, А2 - центры водоизмещения для объёмов, отсекаемых плоскостями аb, a1b1, a2,b2; I - поверхность грузовых ватерлиний; II - поверхность центров водоизмещения.

Если тело погрузить в жидкость до к.-н. плоскости возможной грузовой ватерлинии аb (рис. 2), то на тело будут действовать направленная перпендикулярно этой плоскости (т. е. вертикально вверх) F, проходящая через центр А, и численно равная ей Р. Как доказывается в теории П. т., направление силы F совпадает одновременно с направлением нормали An к поверхности II в точке А.

Рис. 2. Силы, действующие на тело, погружённое в жидкость до грузовой ватерлинии аb.

В положении равновесия силы F и Р должны быть направлены вдоль одной прямой, т. е. нормаль к поверхности II, восстановленная из центра А, должна проходить через центр тяжести С тела (нормали А1С, А2С на рис. 1). Число нормалей к поверхности II, проходящих через центр тяжести С, даёт число возможных положений равновесия плавающего тела. Если тело вывести из положения равновесия, то на него будет действовать F, Р. Когда эта пара стремится вернуть тело в положение равновесия, равновесие устойчиво, в противном случае - неустойчиво. Об устойчивости равновесия можно судить по положению метацентра. Другой простой признак: положение равновесия устойчиво, если для него расстояние между центрами А и С явл. наименьшим по сравнению с этим расстоянием для соседних положений (на рис. 1 при погружении до плоскости а2b2 равновесие устойчиво, а до а1b1- неустойчиво).

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ПЛАВАНИЕ ТЕЛ

Состояниеравновесия твёрдого тела, частично или полностью погружённого в жидкость(или газ). Осн. задача теории П. т. - определение равновесия тела, погружённогов жидкость, выяснение условий устойчивости равновесия. Простейшие условияП. т. указывает Архимеда закон.
Осн. понятия теории П. т. (рис. 1): 1)водоизмещение тела - вес жидкости, вытесняемой телом в состоянии равновесия(совпадает с весом тела); 2) плоскость возможной грузовой ватерлинии -всякая плоскость ab, отсекающая от тела объём, вес жидкости в к-ромравен водоизмещению тела; 3) поверхность грузовых ватерлиний - поверхностьI, в каждой точке к-рой касательная плоскость является плоскостью возможнойгрузовой ватерлинии; 4) центр водоизмещения (или центр величины) - центртяжести А объёма, отсекаемого плоскостью возможной грузовой ватерлинии;5) поверхность центров водоизмещения - поверхность II, являющаяся геом.

Рис. 1. ab, a 1 b 1 ,a 2 b 2 - плоскости возможной грузовой ватерлинии; А, А 1 , А 2 - центры водоизмещения для объёмов, отсекаемых плоскостями ab ,a 1 b 1 ,a 2 b 2 .I - поверхность грузовых ватерлиний; II - поверхность центров водоизмещения.

Если тело погрузить в жидкость до к.-н. ab (рис. 2), то на телобудут действовать направленная перпендикулярно этой плоскости (т. е. вертикальновверх) выталкивающая F , проходящая через центр А, ичисленно равная ей сила тяжести Р . Как доказывается в теорииП. т., направление силы F совпадает одновременно с направлениемнормали Ап кповерхности II в точке А.

Рис. 2. Силы, действующие на тело, погружённоев жидкость до грузовой ватерлинии.

В положении равновесия силы F и Р должны быть направлены вдоль одной прямой, т. е. нормальк поверхности II, восстановленная из центра А, должна проходитьчерез центр тяжести С тела (нормали А 1 С, А 2 С нарис. 1). Число нормалей к поверхности II, проходящих через центр тяжести С, даёт число возможных положений равновесия плавающего тела. Еслитело вывести из положения равновесия, то на него будет действовать парасил F , Р . Когда эта пара стремится вернуть тело в положениеравновесия, равновесие устойчиво, в противном случае - неустойчиво. Обустойчивости равновесия можно судить по положению метацентра. Другойпростой признак: положение равновесия устойчиво, если для него расстояниемежду центрами А и С является наименьшим по сравнению с этимрасстоянием для соседних положений (на рис. 1 при погружении до плоскости a 2 b 2 равновесие устойчиво, а до a 1 b 1 - неустойчиво).

Лит.: Жуковский Н. Е., Теоретическая ,2 изд., М. - Л., 1952.

С . М. Тарг.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ПЛАВАНИЕ ТЕЛ" в других словарях:

    Способность тела удерживаться на поверхности жидкости или на определенном уровне внутри жидкости или газа. Плавание тел объясняется Архимеда законом. Плавание тел устойчиво, если центр тяжести плавающего тела расположен ниже метацентра … Большой Энциклопедический словарь

    ПЛАВАНИЕ ТЕЛ - состояние равновесия твёрдого тела, частично или полностью погружённого в жидкость млн. газ. Для равновесия плавающего тела необходимо, чтобы вес тела и вес вытесненной им жидкости (газа) были равны, что объясняется (см.) … Большая политехническая энциклопедия

    Способность тела удерживаться на поверхности жидкости или на определённом уровне внутри жидкости или газа. Плавание тел объясняется Архимеда законом. Плавание тел устойчиво, если центр тяжести плавающего тела расположен ниже метацентра. * * *… … Энциклопедический словарь

    У этого термина существуют и другие значения, см. Плавание (значения). Т … Википедия

    Состояние равновесия твёрдого тела, частично или полностью погруженного в жидкость (или газ). Основная задача теории П. т. определение положений равновесия тела, погруженного в жидкость, выяснение условий устойчивости равновесия.… …

    Способность тела удерживаться на поверхности жидкости или на определ. уровне внутри жидкости или газа. П. т. объясняется Архимеда законом. П. т. устойчиво, если центр тяжести плавающего тела расположен ниже метацентра … Естествознание. Энциклопедический словарь

    Эта статья об умении человека плавать. О плавании как виде спорта см. Плавание … Википедия

    В Викисловаре есть статья «плавание» Плавание многозначный термин, имеющий следующие определения: Плавание вид спорта, заключающийся в преодолении вплавь за наименьшее время различных дистанций Синхронное (художественное)… … Википедия

    плавать (о теле) - ▲ располагаться частичный, погрузиться в жидкость плавание тел устойчивое положение тела, частично [или полностью] погруженного в жидкость или газ. плавать держаться на поверхности жидкости (дерево плавает в воде). плыть передвигаться в воде.… … Идеографический словарь русского языка

    - (греч. hydraulikós водяной, от hydor вода и aulos трубка) наука о законах движения и равновесия жидкостей и способах приложения этих законов к решению задач инженерной практики. В отличие от гидромеханики (См. Гидромеханика), Г.… … Большая советская энциклопедия

Тип урока: исследование

Используемые технологии: Традиционная, групповая, инновационная.

Цель урока: Выяснить условия плавания тел в зависимости от плотности жидкости и тела, усвоить их на уровне понимания и применения, с использованием логики научного познания.

Задачи:

  1. установить теоретически и экспериментально соотношение между плотностью тела и жидкости, необходимое для обеспечения условия плавания тел;
  2. продолжить формировать умение учащихся проводить опыты и делать из них выводы;
  3. развитие умений наблюдать, анализировать, сопоставлять, обобщать;
  4. воспитание интереса к предмету;
  5. воспитание культуры в организации учебного труда.

Предполагаемые результаты:

Знать: Условия плавания тел.

Уметь: Экспериментально выяснять условия плавания тел.

Оборудование: Мультимедиа, экран, индивидуальные карточки задания, таблица плотностей, исследуемые материалы.

Ход урока

Активизация знаний:

Учитель:

На предыдущих уроках мы рассмотрели действие жидкости и газа на погруженное в них тело, изучили закон Архимеда, условия плавания тел. Тему сегодняшнего урока мы узнаем, решив кроссворд.

По горизонтали: 1. Единица деления. 2. Единица массы. 3. Кратная единица массы. 4. Единица площади. 5. Единица времени. 6. Единица силы. 7. Единица объема. 8. Единица длины.

Ответы: 1. Паскаль. 2. Килограмм. 3. Тонна. 4. Квадратный метр. 5. Час. 6. Ньютон. 7. Литр. 8. Метр.

(Тему урока записываем в тетради)

Учитель: Но а теперь прежде, чем приступить с решению экспериментальных задач, ответим на несколько вопросов. Какая сила возникает при погружении тела в жидкость?

Учащиеся: Архимедова сила.

Учитель: Куда направлена эта сила?

Учащиеся: Она направлена вертикально вверх.

Учитель: От чего зависит архимедова сила?

Учащиеся: Архимедова сила зависит от объёма тела и от плотности жидкости.

Учитель: А если тело не полностью погружено в жидкость, то как определяется архимедова сила?

Учащиеся: Тогда для подсчета архимедовой силы надо использовать формулу F A = ρ ж gV, где V – объем той части тела, которая погружена в жидкость.

Учитель: Какими способами можно на опыте определить архимедову силу?

Учащиеся: Можно взвесить жидкость, вытесненную телом, её вес и будет равен архимедовой силе. Можно найти разность показаний динамометра при взвешивании тела в воздухе и в жидкости, эта разность тоже равна архимедовой силе. Можно определить объем тела с помощью линейки или мензурки. Зная плотность жидкости, объем тела, можно вычислить архимедову силу.

Учитель: Итак, мы знаем, что на всякое тело, погруженное в жидкость, действует архимедова сила. А ещё, какая сила действует на любое тело, погруженное в жидкость?

Учащиеся: Сила тяжести.

Учитель: Вы можете привести примеры тел, которые плавают на поверхности воды? А какие тела тонут в воде? А как ещё тело может вести себя в воде? Какие это тела? Попробуйте угадать, о каком плавающем теле пойдёт сейчас речь.

Сегодня над морем
Большая жара;
А в море плывёт
Ледяная гора.
Плывёт и, наверно,
Считает:
Она и в жару не растает.

Учащиеся: Айсберг.

Учитель: А изменилось бы что-нибудь, если бы воду в океане мы мгновенно поменяли бы на керосин?

(Учащиеся путаются в ответах)

Вы не можете точно ответить на этот вопрос. Но у вас уже появляются идеи, гипотезы. Давайте сегодня на уроке вместе решим проблему: Выясним: Каковы условия плавания тел в жидкости.

Решение исследовательских задач:

Запишите в тетради тему урока “Условия плавания тел”.

Учитель: Ребята, а вы знаете, какой учёный изучал плавание тел?

Учащиеся: Архимед.

Учитель: Попробуем все сведения об условиях плавания тел проверить экспериментально, выполнив исследования. Мы с вами уже так поступали при изучении силы трения. Каждая группа получит своё задание. После выполнения заданий мы обсудим полученные результаты и выясним условия плавания тел.

Все результаты записывайте в тетрадь. Если возникнут вопросы, поднимите руку.

(Ребята получают карточки с заданиями и оборудование для их выполнения 7 вариантов. Варианты заданий не одинаковы по уровню трудности: первые – наиболее простые, 6 и 7 – сложнее. Они даются соответственно уровню подготовки.)

Задания:

Задание группе 1 :

  1. Пронаблюдайте, какие из предложенных тел тонут, и какие плавают в воде.
  2. Найдите в таблице учебника плотности, соответствующих веществ и сравните с плотностью воды.
  3. Результаты оформите в виде таблицы.

Оборудование: сосуд с водой и набор тел: стальной гвоздь, фарфоровый ролик, кусочки свинца, сосновый брусок.

Оборудование: сосуд с водой и набор тел: кусочки алюминия, органического стекла, пенопласта, пробки, парафина.

Задание группе 2 :

  1. Сравните глубину погружения в воде деревянного и пенопластового кубиков одинаковых размеров.
  2. Выясните, отличается ли глубина погружения деревянного кубика в жидкости разной плотности. Результат опыта представить на рисунке.

Оборудование: два сосуда (с водой и с маслом), деревянный и пенопластовый кубики.

Задание группе 3 :

  1. Сравните архимедову силу, действующую на каждую из пробирок, с силой тяжести каждой пробирки.
  2. Сделайте выводы на основании результатов опытов.

Оборудование: мензурка, динамометр, две пробирки с песком (пробирки с песком должны плавать в воде, погрузившись на разную глубину).

Задание группе 4 :

  1. «Можно ли «заставить» картофелину плавать в воде? Заставьте картофелину плавать в воде.
  2. Объясните результаты опыта. Оформите их в виде рисунков.

Оборудование: сосуд с водой, пробирка с поваренной солью, ложка, картофелина средней величины.

Задание группе 5 :

  1. Добейтесь, чтобы кусок пластилина плавал в воде.
  2. Добейтесь, чтобы кусок фольги плавал в воде.
  3. Поясните результаты опыта.

Оборудование: сосуд с водой; кусок пластилина и кусочек фольги.

Учитель: Мы говорили об условии плавания твёрдых тел в жидкости. А может ли одна жидкость плавать на поверхности другой?

Задание группе 6 : Наблюдение всплытия масляного пятна, под действием выталкивающей силы воды.

Цель работы: Провести наблюдение за всплытием масла, погруженного в воду, обнаружить на опыте выталкивающее действие воды, указать направление выталкивающей силы.

Оборудование: сосуды с маслом, водой, пипетка.

Последовательность проведения опыта:

  1. Возьмите с помощью пипетки несколько капель масла.
  2. Опустите пипетку на глубину 3 – 4 см в стакан с водой.
  3. Выпустите масло и пронаблюдайте, образование масляного пятна на поверхности воды.
  4. На основе проделанного опыта сделайте вывод.

После выполнения эксперимента обсуждаются результаты работы, подводятся итоги.

Пока учащиеся выполняют задания, наблюдаю за их работой, оказываю необходимую помощь.

Учитель: Заканчиваем работу, приборы отодвиньте на край стола. Переходим к обсуждению результатов. Сначала выясним, какие тела плавают в жидкости, а какие – тонут. (Группа 1)

Учащиеся: Один из них называет те тела, который тонут в воде, другой – тела, которые плавают, третий сравнивает плотности тел каждой группы с плотностью воды. После этого все вместе делают вывод.

Выводы:

  1. Если плотность вещества, из которого изготовлено тело больше плотности жидкости, то тело тонет.
  2. Если плотность вещества меньше плотности жидкости, то тело плавает.

(Выводы записываются в тетрадях.)

Учитель: Что произойдет с телом, если плотности жидкости и вещества будут равны?

Учащиеся: дают ответ.

Посмотрим, как ведут себя тела, плавающие на поверхности жидкости. Ребята группы 2 рассматривали, как ведут себя тела, изготовленные из дерева и пенопласта в одной и той же жидкости. Что они заметили?

Учащиеся: Глубина погружений тел разная. Пенопласт плавает почти на поверхности, а дерево немного погрузилось в воду.

Учитель: Что можно сказать о глубине погружения деревянного бруска, плавающего на поверхности воды, масла?

Учащиеся: В масле брусок погружался глубже, чем в воде.

Вывод: Таким образом, глубина погружения тела в жидкость зависит от плотности жидкости и самого тела.

Запишем этот вывод.

Учитель: Теперь выясним, можно ли заставить плавать тела, которые в обычных условиях тонут в воде, например картофелину или пластилин или фольгу. (Группа 4; Группа 5)

Что вы наблюдаете?

Учащиеся: Они тонут в воде. Чтобы заставить картофелину плавать, мы насыпали в воду больше соли.

Учитель: В чем же дело? Что же произошло?

Учащиеся: У соленой воды увеличилась плотность и она стала сильнее выталкивать картофелину. Плотность воды возросла и архимедова сила стала больше.

Учитель: Правильно. А у ребят, выполнявших задание с пластилином, соли не было. Каким образом вам удалось добиться, чтобы пластилин плавал в воде?

Учащиеся: Мы сделали из пластилина лодочку. Она имеет больший объем и поэтому плавает. Можно сделать из пластилина коробочку, она тоже плавает. У нее тоже больше объем, чем у куска пластилина.

Вывод: Итак, чтобы заставить плавать обычно тонущие тела, можно изменить плотность жидкости или объем погруженной части тела. При этом изменяется и архимедова сила, действующая на тело. Как вы думаете, есть ли какая – нибудь связь между силой тяжести и архимедовой силой для плавающих тел?

Учитель: (Группа 6) Снова вернёмся к таблице плотности веществ. Объясним, почему на воде образуется масляная плёнка.

Итак, проблема решена, значит, жидкости, как и твёрдые тела подчиняются условиям плавания тел.

Продолжим беседу о жидкостях.

Один неглубокий сосуд пригласил в гости сразу три несмешивающиеся жидкости разной плотности и предложил им располагаться со всеми удобствами. Как расположились жидкости в гостеприимном сосуде, если это были: масло машинное, мёд и бензин.

Укажите порядок расположения жидкостей.

Учащиеся: (Группа 3) Мы погружали в воду две пробирки с песком – одна легче, другая тяжелее, - и обе они плавали в воде. Мы определили, что архимедова сила в том и другом случае примерно равна силе тяжести.

Учитель: Молодцы. Значит, если тело плавает, то F A = F тяж. (записываю на доске). А если тело тонет в жидкости?

Учащиеся: Тогда сила тяжести больше архимедовой силы.

Учитель: А если тело всплывает?

Учащиеся: Значит, архимедова сила больше силы тяжести.

Учитель: Итак, получили условие плавания тел. Но оно не связано с плотностью тела или с плотностью самой жидкости. (Эту зависимость рассмотрели ребята 1 группы). Значит, условия тел можно сформулировать двумя способами: сравнивая архимедову силу и силу тяжести или сравнивая плотности жидкости и находящегося в ней вещества. Где в технике учитываются эти условия?

Учащиеся: При постройке кораблей. Раньше делали деревянные корабли и лодки. Плотность дерева меньше плотности воды, и корабли плавали в воде.

Учитель: Металлические корабли тоже плавают, а ведь куски стали тонут в воде.

Учащиеся: С ними поступают так, как мы поступили с пластилином: увеличивают объем, архимедова сила становится больше, и они плавают. Еще делают понтоны и подводные лодки.

Учитель: Итак, в судостроении используется тот факт, что путем изменения объема можно придать плавучесть практически любому телу. А учитывается ли как-нибудь связь условий плавания тел с изменением плотности жидкости?

Учащиеся: Да, при переходе из моря в реку меняется глубина осадки судов.

Учитель: Приведите примеры использования условий плавания тел в технике.

Учащиеся: Для речных переправ применяют понтоны. В морях и океанах плавают подводные лодки. Для подводного плавания часть их емкости заполняют водой, а для надводного – воду выкачивают.

(Демонстрирую рисунки современных кораблей.)

Учитель: Посмотрите внимательно на атомный ледокол. В нашей стране работают несколько таких ледоколов. Они самые мощные в мире и могут плавать, не заходя в порты, более года. Но подробнее мы поговорим об этом на следующем уроке.

Оформление доски: Задание на дом § 48.

Тема урока: Условия плавания тел.

Итог урока:

Делаем с ребятами вывод о проведенных исследованиях. Ещё раз обобщаем условия плавания тел с помощью таблицы, представленной на доске.

Рефлексия:

  • Сегодня на уроке мне понравилось …
  • Я хочу, чтобы …
  • Я узнал …
  • Я сегодня собой …













Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока:

  • Обучающая : закрепление у учащихся знаний, навыков и проведение опытов, умение вести исследование – «плавание тел».
  • Развивающая : научить учащихся применять знания в новой ситуации, развить умения объяснить окружающие явления.
  • Воспитательная : формирование практической, самостоятельной работы с учетом уровня их подготовки.

Задачи урока:

  • Образовательная : добиться усвоение учащихся условий плавания тел на основе изученного понятия об Архимедовой силе, формировать практические умения учащихся определять Архимедову силу с помощью динамометра и мерного стакана, делать выводы по результатам экспериментальных заданий.
  • Развивающая : развивать творческую активность, творческие способности учащихся.
  • Воспитательная : показать использование условий плавания тел в технике, в народном хозяйстве.

Оборудование: лабораторные сосуды с водой, маслом; набор тел разной плотности; деревянный и пенопластиковый кубики одинаковых размеров; клубень картофеля; пробирка с поваренною солью; пластилин; пробирки с песком; прямоугольный параллелепипед из пенопласта; динамометры; гири; мензурки.

ХОД УРОКА

I. Организационный момент (Слайды 1-2)

Мотивация. Создание психологического климата

Людей всегда интересовал вопрос: «Как плавают люди? Почему водные животные не нуждаются в прочных скелетах? Как регулируют глубину погружения киты? Как плавают суда?
Содержание сегодняшнего урока поможет нам, почему одни тела плавают на поверхности жидкости, а другие – тонут, почему возможно плавание судов, подводных лодок, воздушных шаров и дирижаблей.

II. Актуализация опорных знаний учащихся

Фронтальный опрос.
Прием – беседа.
Метод – репродуктивный.

Деятельность учителя Деятельность ученика
На предыдущих уроках мы познакомились с действием жидкости на тела, погруженные в нее.
Какая сила возникает при погружении тела в жидкость?
Архимедова сила.
2. Как направлена эта сила? Она направлена вертикально вверх.
3. От чего зависит Архимедова сила? Она зависит от объема тела и от плотности жидкости.
4. А если тело не полностью погружено в жидкость, то как определяется Архимедова сила? Тогда для подсчета Архимедовой силы надо использовать формулу F =?жgV, где V – объем той части тела, которая погружена в жидкость.
5. Какими способами можно на опыте определить Архимедову силу? Можно взвесить жидкость, вытесненную телом, ее вес и будет равен Архимедовой силе.
Можно найти разность показаний динамометра при взвешивании тела в воздухе и в жидкости, эта разность тоже равна Архимедовой силе.
Можно определить объем тела с помощью линейки или мензурки. Зная плотность жидкости, объем тела, можно вычислить архимедову силу.

Итак, мы знаем, что на всякое тело, погруженное в жидкость действует, Архимедова сила. Но одни тела плавают в жидкости, другие тонут, а третьи всплывают на поверхность.

III. Формулирование целей и задач урока (Слайд 4)

Сегодня мы выясним это. Запишем тему урока: « Плавание тел. Условия плавания тел».

Попробуем все сведения об условиях плавания тел получить из опыта. Исследуем эти условия.

(Метод обучения: исследовательский) (Слайды 5-6)

Самостоятельная работа в парах по уровням способностей учащихся. Ребята получили карточки с заданиями, созданы пары. Каждая имеет свое задание.

– выполнить опыт по инструкции;
– заполнить таблицу;
– подготовить сообщение для устного ответа;
– подготовить отчет об опыте;
– сделать вывод.

(Время работы – 15 минут. Пока учащиеся выполняют задания, учитель наблюдает за их работой, оказывает необходимую помощь. Так как ответы будут использоваться при изложении нового материала, учитель намечает, в какой последовательности они будут отчитываться.)

Первый вариант :

Пронаблюдать, какие из предложенных тел тонут и какие плавают в воде; найти в таблице учебника плотности соответствующих веществ и сравнить с плотностью воды. Результаты оформить в виде таблицы:

Для выполнения этого задания нужен сосуд с водой и набор тел: стальной гвоздь, фарфоровый ролик, кусочки свинца, алюминия, органического стекла, пенопласта, пробки, парафина. Тела находятся в коробке с перегородками, в каждой ячейке указано название вещества.

Второй вариант :

Сравнить глубину погружения в воде деревянного и пенопластового кубиков одинаковых размеров; выяснить отличается ли глубина погружения деревянного кубика в жидкости разной плотности. Результат опыта представить на рисунке.

Третий вариант :

Сравнить Архимедову силу, действующую на каждую из пробирок, с силой тяжести каждой пробирки; сделать вывод.
При выполнении этого задания используются мензурка, динамометр, две пробирки с песком (пробирки с песком должны плавать в воде, погрузившись на разную глубину).

Четвертый вариант :

Заставить картофелину плавать в воде. Объяснить результаты опыта. Для выполнения задания используются сосуд с водой, пробирка с поваренной солью, ложка, картофелина средней величины.

Пятый вариант :

Добиться, чтобы кусок пластилина плавал в воде. Пояснить результаты опыта.
Для выполнения задания нужны сосуд с водой и кусок пластилина.

Шестой вариант :

Выяснить, изменится ли глубина погружения пробирки в воду, если, а) пластилин положить внутрь пробирки;
б) прикрепить его ко дну пробирки снаружи.
При выполнении этого задания используются сосуд с водой, пробирка, кусок пластилина.

Седьмой вариант :

Выяснить, какой груз может поднять плот (кусок пенопласта) в воде.
Для проведения опыта из пенопласта заранее вырезают небольшой прямоугольный параллелепипед и подбирают несколько тел разной массы.

IV. Объяснение нового материала

Великий русский ученый М.В. Ломоносов говорил (Слайд 7)

Попробуем все сведения об условиях плавания тел получить из опытов. Исследуем эти условия. После выполнения заданий мы обсудим полученные результаты и выясним условия плавания тел. На выполнение опытов отводится 15 минут. Откройте учебники стр. 26, где помещены таблицы плотностей различных веществ. Они вам пригодятся во время работы. Внимательно прочитайте свои задания, постарайтесь не отвлекаться.

(Задания дифференцированы в соответствии уровня подготовки учащихся).

Все результаты записывайте в тетрадь. Если у кого-нибудь возникнут вопросы, поднимите руку.

(Каждый получил карточку с заданием и оборудованием для выполнения работы)

– выполнить опыт по инструкции
– заполнить таблицу
– подготовить сообщение для устного ответа
– подготовить отчет об опыте
– сделать вывод.

Заканчиваем свою работу, приборы отодвинули на край стола. Переходим к обсуждению результатов. Сначала выясним, какие тела плавают в жидкости, а какие – тонут, какие всплывают.

(Отвечают те ребята, которые делали 1-3 варианты.)

Таким образом, глубина погружения тела в жидкость зависит от плотности жидкости и самого тела. Запишем эти выводы на доске и в тетрадях.

Запись на доске:

(Слайд 8)

Глубина погружения зависит от плотности жидкости и плотности вещества тела.

Теперь выясним, можно ли заставить плавать тела, которые в обычных условиях тонут в воде, например картофелину или пластилин.

Посмотрим опыт. Бросим эти тела в воду.

Вопросы учителя Ответы ученика
1. Что вы наблюдаете? Они тонут в воде.
2. А у кого картофелина плавает в воде? В чем дело? Чтобы заставить ее плавать, я насыпал в воду побольше соли.
3. Что же произошло? У соленой воды увеличилась плотность и она стала сильнее выталкивать картофелину. Плотность воды возросла и Архимедова сила стала больше.
4. Верно. А у ребят, выполнявших задание с пластилином, соли не было. Каким образом вам удалось добиться, чтобы пластилин плавал в воде? Мы сделали из него лодочку, она имеет большой объем и поэтому плавает.
5. Неверно, не просто большой, а больший, чем у куска пластилина. А мы сделали из пластилина коробочку, она тоже плавает.
6. А она почему плавает? У нее тоже большой объем, чем у куска пластилина.
7. Итак, чтобы заставить плавать обычно тонущие тела, можно изменить плотность жидкости или объем погруженной части тела. При этом изменяется и Архимедова сила, действующая на тело. Как вы думаете, есть ли какая-нибудь связь между силой тяжести и Архимедовой силой для плавающих тел? Мы погрузили в воду пробирки с песком – одна полегче, другая потяжелее, – и обе они плавали в воде. Мы определили, что Архимедова сила в том и другом случае примерно равна силе тяжести.
8. Молодцы! Значит, если тело плавает, то Архимедова сила равна примерно силе тяжести. А если тело тонет в жидкости? (запись на доске) Тогда сила тяжести больше Архимедовой силы.
9. А если всплывает? Тогда Архимедова сила больше силы тяжести.

(Слайд 9)

Дома для каждого из этих случаев сделайте рисунок.
(запись на доске)

Итак, мы получили условия плавания тел, значит, условия плавания тел можно сформулировать 2 способами:

1. Сравнивать плотности жидкости и вещества.
2.Сравнивать Архимедову силу и силу тяжести.

Где в технике учитываются условия плавания тел?

IV. Применение (Слайды 10-11)

1. При постройке кораблей и судов. Раньше делали деревянные корабли и лодки. Плотность дерева меньше плотности воды, и корабли плавали в воде.
2. Металлические корабли плавают, а ведь куски стали тонут в воде.

– Опыт с пластилином: увеличивается объем, Архимедова сила становится больше и они плавают.

Еще делают понтоны и подводные лодки. (Слайд 12)

Итак, в судостроении используется тот факт, что путем изменения объема можно придать плавучесть практически любому телу. А учитывается ли как-нибудь связь условий плавания тел с изменением плотности жидкости?
Ответ: Да, при переходе из моря в реку меняется глубина осадки судов.
Приведите примеры использования условий плавания тел в технике.
Ответ: Для речных переправ применяют понтоны. В морях и океанах плавают подводные лодки. Для подводного плавания часть их емкости заполняют водой, а для надводного – воду выкачивают.
Например, взять атомный ледокол. В нашей стране работают несколько таких ледоколов. Они самые мощные в мире и могут плавать, не заходя в порты, более года. Но подробнее поговорим на следующем уроке. Мы сегодня не рассматривали задания 6 и 7 вариантов. Ребята, выполнявшие их, сдадут свои тетради, а итоги этой работы мы и обсудим на следующем уроке.

VI. Домашнее задание:

Открыть дневники, запишем домашнее задание – § 48
Подготовить и принести задания, которые я давала ранее:

1. Схема подводной лодки.
2. Рисунок человека, плавающего в Мертвом море.
3. Доклад «История развития Военно-морского флота».

VII. Итоги урока

Итак, сегодня мы выяснили при каких условиях плавают тела и при каких – тонут. От чего зависит плавание тел? (проходим по записям на доске условия плавания тел).

За урок поставлены оценки за ответы опроса и за самостоятельную работу

VIII. Рефлексия

– Урок вам понравился? (Показать кружочек, выражающий ваше мнение)

– Спасибо за урок!

(Слайд 13)

Литература:

1. А.В.Перышкин , Физика. 7 класс, М. «Дрофа» 2009 г.
2. Под редакцией В.Г. Разумовского и Л.С.Хижняковой «Современный урок физики» М. «Просвещение» 1993г.
3. «Структура урока. Структурный анализ урока», Саратов 2008 г.
4. «Уроки физики с применением ИКТ» Изд. «Современная школа» – диск и книга.

По закону Архимеда на тело, погруженное в жидкость, действует выталкивающая сила, направленная вертикально вверх,

где W- объем погруженной части тела.

Вес воды, вытесняемой телом, полностью или частично погру­женным в воду, называется водоизмещением.

Центр тяжести
вытесненного объема жидкости называетсяцент­ром водоизмещения илицентром давления . При наклоне (крене) плавающего тела центр водо­измещения изменяет свое положение.

Линия, проходящая через центр тяжести тела и центр водоизмеще­ния
в положении равновесия пер­пендикулярно свободной поверхности воды (плоскости плавания), явля­етсяосью плавания. В положении рав­новесия ось плавания вертикальна, при крене она наклонена к вертикали под углом крена.

Точку пересечения подъемной силы Р при наклонном положении тела с осью плавания принято называтьме­тацентром. Расстояние между цент­ром тяжести тела и метацентромMобозначается черезh м (метацентрическая высота). Чем выше расположен метацентр над центром тяжести тела, т. е. чем больше метацентрическая высота, тем больше остойчивость тела (способность из крена переходить в положение равновесия), так как момент пары сил
, стремящийся восстановить равновесие тела, прямо пропорционален метацентрической высоте. Величина метацентрической высоты может быть определена по формуле

где - момент инерции площади плоскости плавания относительно продольной оси
;

W- водоизмещение тела;

е - расстояние между центром тяжести и центром водоизме­щения.

Если метацентр лежит ниже центра тяжести тела, т. е. метацентрическая высота отрицательна, то тело неостойчиво.

Примеры

2.48. Определить вес груза, установленного на круглом в плане металлическом понтоне диаметром
, если после установки груза осадка понтона увеличилась на
.

Решение. Вес груза равен дополнительной силе вытеснения воды. В соответствии с законом Архимеда дополнительная сила вытеснения воды определяется по формуле:

.

Следовательно, вес груза

Ответ:
.

2.49. Простейший ареометр (прибор для определения плотности жидкостей), выполненный из круглого карандаша диаметром
и прикреплённого к его основанию металлического шарика диаметром
, имеет вес
. Определить плотность жидкости, если ареометр цилиндрической частью погружается в неё на глубину
.

Решение. Вес ареометра уравновешивается силой вытеснения (архимедовой силой).

Следовательно,

откуда найдем плотность жидкости

Ответ:
.

2.50. Объём части ледяной горы, возвышающейся над поверхностью моря, равен
. Определить общий объём ледяной горы и глубину её погружённой части, если в плане она имеет форму прямоугольника размером
.

Решение. Общий вес ледяной горы

где - объём подводной части ледяной горы;

- плотность льда.

Сила вытеснения (подъёмная сила) по закону Архимеда

,

где - плотность морской воды.

При плавании ледяной горы соблюдается условие

;

,

где
;

(табл. П-3).

Подставляя цифровые значения в предыдущую формулу, получим:

.

Общий объём ледяной горы

Глубина погружённой части ледяной горы

.

Ответ:
;
.

2.51. Запорно-поплавковый клапан бака водонапорной башни имеет следующие размеры:d=100мм;l=68мм;
мм;D=325мм. Если уровень воды не достигает полушара 2 , то клапан 1 открыт, и вода поступает в бак. По мере подъёма уровня воды и погружения в неё полушара на рычаг 3 начинает действовать сила
, равная выталкивающей силе воды (по закону Архимеда). Через рычаг усилие передаётся на клапан. Если величина этого усилия превысит силу давления водыp на клапан, то он закроется и вода перестанет поступать в бак. Определить, до какого предельного давленияpклапан будет закрыт, если допускается погружение в воду только полушара поплавка (до линии а – а).

Решение. Сила суммарного давления воды на клапан

где p– гидростатическое давление в корпусе клапана;

ω – площадь клапана.

Выталкивающая сила воды, действующая на поплавок, в соответствии с законом Архимеда

где
- объём шара.

Составим сумму моментов сил относительно шарнира О

С учётом ранее полученных зависимостей запишем уравнение моментов

Отсюда находим предельное давление

Ответ:
.

2.52. Автомобиль весомустановлен на паром с размерами
;
;
. Проверить остой­чивость парома, если его весприложен на поло­вине его высоты, а центр тяжести автомобиля находится на высоте
от верхней плоскости парома. Установить, как изменится метацентрическая высота, если на автомобиль будет уложен груз, центр тяжести которого расположен на высоте
от верхней плоскости парома.

Решение. 1) Найдем положение центра тяжести парома с автомобилем (без груза) относительно нижней плоскости парома

2) Водоизмещение парома с автомобилем (объем воды, вытесненный паромом)

3) Осадка парома

4) Расстояние центра водоизмещения от нижней плоскости парома

    Расстояние между центром тяжести и центром водоизмещения

    Момент инерции площади плоскости плавания

    Метацентрическая высота

Так как метацентрическая высота положительная, то паром остойчив. Для случая

нагруженного автомобиля аналогично находим:

Следовательно, при наличии груза на автомобиле метацентрическая высота уменьшается на

Но паром и при наличии груза будет остойчив.

Ответ:
.

2.53 . Определить остойчивость деревянного цилиндрического бруса диаметром d =0,6 м и высотой h =0,5 м, если относительный удельный вес древесины
.

Решение:

Найдем силу веса цилиндра:

G бр =W бр дер,

где дер=

0,7
=7000 Н/м 3 – удельный вес дерева;

W бр =
=0,785
м 3 - объем бруса.

Тогда вес бруса G бр=7000
987 Н.

Вычисляем водоизмещение цилиндра:

W=
м 3 .

Осадка цилиндра составит:

=
м.

Найдем расстояние центра водоизмещения от нижней плоскости цилиндра:

H ц.в. ==
м.

Центр тяжести цилиндра находится на расстоянии от нижней плоскости:

h ц.т. =
м.

Расстояние между центром тяжести и центром водоизмещения составит:

е=h ц.т. -h ц.в. =0,25-0,175=0,075 м.

Момент инерции площади плоскости плавания составит:

I 0 =
м 4 .

Метацентрическая высота равняется:

Так как h м < 0, то цилиндр неостойчив.

2.54. Плавучий железобетонный тоннель с наружным диаметромD=8м и толщиной стенки=0,3м удерживается от всплытия тросами, расположенными попарно через каждые 25м длины тоннеля. Определить натяжение тросов, если вес 1м дополнительной

нагрузки по длине q=9,81кН, плотность бетона
, а угол
.

Решение:

Составим уравнение равновесия сил, действующих на

Где:

Подставив значение сил в исходное уравнение, получим:

откуда найдём силу, действующую на каждый трос:

Ответ: =

2.55. Определить необходимую высоту Н колокола газгольдера весомG=70кг, диаметромD=70см, чтобы объем газовой подушки был равенW=100л.

Решение: К
олокол удерживается в равновесии вследствие равенства сил, действующих на него:

р – избыточное давление в газовой подушке под колоколом;

ω – площадь колокола;

G– сила веса колокола.

Найдем избыточное давление газа под колоколом

.

Для определения величины Н используем уравнение Клайперона - Менделеева, исходя из

предположения, что процесс происходит изотермически:

;

откуда найдём соотношение

;

где – первоначальный объем газа в колоколе при атмосферном давлении,

– конечный объем газа при давлении
.

Причём величина давления составляет

Подставим в уравнение газового состояния.

где
– заданный первоначальный объём.

Получаем:

Ответ:
.

2.56. Определить давление р, создаваемого колоколом газгольдера и определить разность уровней воды под колоколом и в его стаканеh, если вес колоколаG= 20 кг и его диаметрd= 40 см.

Р
ешение:

Составим уравнение равновесия сил, действующих на колокол:

,

где – сила давления в газовой подушке.

,

где
– площадь (горизонтальная) сечения колокола.

Найдем давление под колоколом:

.

Это давление в газовой подушке (без учета атмосферного). Оно сохраняется во всех

точках постоянным, в том числе и на свободной поверхности воды под колоколом,

и на уровне сечения а-а вне колокола. А это давление, в свою очередь, можно определить так:

и будет

.

Ответ:

2.57. Шарообразный поплавок помещен в жидкость, находящуюся в цилиндрическом сосуде, плавающем в той же самой жидкости. Вес сосудаG 1 =1кг, вес жидкостиG 2 =5кг.

Известно также соотношение глубин k==0,9.

Определить вес поплавка.

Решение.

Составим уравнение равновесия всех сил, действующих на эту систему:

G с +G ж +G n =F арх

где F арх =
- архимедова сила, действующая на цилиндрический сосуд с жидкостью и поплавком. Или, подставив значения получим

5+1+ G n =F арх;

; или

(1),

Объём жидкости в цилиндре и объём погруженной части поплавка составляют:

W ж +W п.ч.п. =
.

В свою очередь – объём погруженной части поплавка умноженный на удельный вес жидкости - это вес поплавка:

W п.ч.п =F apx ’ =G n .

Или =W п.ч.п. Подставим в исходное уравнение:

W ж +=
получаем

W ж +G n =
,

где W ж =G ж – это вес жидкости в цилиндре, тогда

G ж +G n =
, откуда

G n =
-G ж; или

G n =
- 5. (2)

Запишем ещё раз уравнение (1):

G n =
- 6. (1)

Приравняем правые части соотношений (1) и (2), получим:

-5=
-6.

Учтём, что k=0,9=. Откуда найдём значение=0,9, тогда

-
=6-5=1

(-)=1;

(-0,9)=1;

0,1=1;

=10/

Подставим это значение в уравнение (1) и найдём вес поплавка:

G n =
- 6=-6=4 кг

Ответ: G n =4кг.

2.58 . Определить удельный вес бруса, имеющего следующие размеры: ширинаb=30см, высотаh=20см, длина=100см, глубина погружения у=16см.

Решение :

Составим уравнение равновесия для плавающего бруса:

,

где

;

;

=
.

Откуда получаем соотношение

.

Найдём удельный вес бруса

=

.

Ответ:
.



mob_info