Что называется силой мышцы. От чего зависит сила мышц человека

  • Скелетная мускулатура является составной частью опорно-двигательного аппарата человека. При этом мышцы выполняют следующие функции:

    1) обеспечивают определенную позу тела человека;

    2) перемещают тело в пространстве;

    3) перемещают отдельные части тела относительно друг друга;

    4) являются источником тепла, выполняя терморегуляционную функцию.

  • Свойства скелетной мышцы :

    1) Возбудимость - способность отвечать на действие раздражителя изменением ионной проводимости и мембранного потенциала. В естественных условиях этим раздражителем является медиатор ацетилхолин, который выделяется в пресинаптических окончаниях аксонов мотонейронов. В лабораторных условиях часто используют электрическую стимуляцию мышцы. При электрической стимуляции мышцы первоначально возбуждаются нервные волокна, которые выделяют ацетилхолин, т.е. в данном случае наблюдается непрямое раздражение мышцы. Это обусловлено тем, что возбудимость нервных волокон выше мышечных. Для прямого раздражения мышцы необходимо применять миорелаксанты - вещества, блокирующие передачу нервного импульса через нервно-мышечный синапс;

    2) Низкая проводимость (10-13 м/с) - способность проводить потенциал действия вдоль и вглубь мышечного волокна по Т-системе;

    3) Сократимость - способность укорачиваться или развивать напряжение при возбуждении;

    4) Эластичность - способность развивать напряжение при растягивании.

    5) Рефрактерность – отсутствие или снижение возбудимости нерва или мышцы после предшествующего возбуждения. Занимает по времени больший отрезок, чем у нервного волокна.

    6) Лабильность – функциональная подвижность, скорость протекания элементарных циклов возбуждения в нервной и мышечной тканях

  • Основными показателями, характеризующими деятельность мышц, являются их сила и работоспособность.

  • Сила мышц . Сила - мера механического воздействия на мышцу со стороны других тел, которая выражается в ньютонах или кг-силах. При изотоническом сокращении в эксперименте сила определяется массой максимального груза, который мышца может поднять (динамическая сила ); при изометрическом - максимальным напряжением, которое она может развить (статическая сила).

    Одиночное мышечное волокно развивает напряжение в 100-200 кг-сил во время сокращения.

    Степень укорочения мышцы при сокращении зависит от силы раздражителя, морфологических свойств и физиологического состояния. Длинные мышцы сокращаются на большую величину, чем короткие.

    Незначительное растяжение мышцы, когда напрягаются упругие компоненты, является дополнительным раздражителем, увеличивает сокращение мышцы, а при сильном растяжении сила сокращения мышцы уменьшается.

    Напряжение, которое могут развивать миофибриллы, определяется числом поперечных мостиков миозиновых нитей, взаимодействующих с нитями актина, так как мостики служат местом взаимодействия и развития усилия между двумя типами нитей. В состоянии покоя довольно значительная часть поперечных мостиков взаимодействует с актиновыми нитями. При сильном растяжении мышцы актиновые и миозиновые нити почти перестают перекрываться и между ними образуются незначительные поперечные связи.

    Величина сокращения снижается также при утомлении мышцы.

    Изометрически сокращающаяся мышца развивает максимально возможное для нее напряжение в результате активации всех мышечных волокон. Такое напряжение мышцы называют максимальной силой . Максимальная сила мышцы зависит от числа мышечных волокон, составляющих мышцу, и их толщины. Они формируют анатомический поперечник мышцы, который определяется как площадь поперечного разреза мышцы, проведенного перпендикулярно ее длине. Отношение максимальной силы мышцы к ее анатомическому поперечнику называется относительной силой мышцы, измеряемой в кг/см2.

    Физиологический поперечник мышцы - длина поперечного разреза мышцы, перпендикулярного ходу ее волокон.

    В мышцах с параллельным ходом волокон физиологический поперечник совпадает с анатомическим. У мышц с косыми волокнами он будет больше анатомического. Поэтому сила мышц с косыми волокнами всегда больше, чем мышц той же толщины, но с продольными волокнами. Большинство мышц домашних животных и особенно птиц с косыми волокнами перистого строения. Такие мышцы имеют больший физиологический поперечник и обладают большей силой.

    Наиболее сильными являются многоперистые мышцы, затем идут одноперистые, двухперистые, полуперистые, веретенообразные и продольноволокнистые.

    Много, -одно, -и двухперистые мышцы имеют большую силу и выносливость (мало утомляются), но ограниченную способность к укорачиванию, а остальные виды мышц хорошо укорачиваются, но быстро утомляются.

    Сравнительным показателем силы разных мышц является абсолютная мышечная сила - отношение максимальной силы мышцы к ее физиологическому поперечнику, т.е. максимальный груз, который поднимает мышца, деленный на суммарную площадь всех мышечных волокон. Она определяется при тетаническом раздражении и при оптимальном исходном растяжении мышцы. У сельскохозяйственных животных абсолютная сила скелетных мышц колеблется от 5 до 15 кг-сил, в среднем 6-8 кг-сил на 1см2 площади физиологического поперечника. В процессе мышечной работы поперечник мышцы увеличивается и, следовательно, возрастает сила данной мышцы.

  • Работа мышц . Работа мышц внешне выражается либо в фиксации части тела, либо в движении. В первом случае говорят о так называемой статической работе, а во втором – о динамической работе.

    Статическая работа мышц есть следствие равенства моментов сил и называется еще удерживающей работой. При такой работе форма мышцы, ее размеры, возбуждение и напряжение относительно постоянны.

    Динамическая работа мышц сопровождается движением и есть следствие разности моментов сил. В зависимости от того, какой момент окажется большим, различают два вида динамической работы мышц: преодолевающую и уступающую. Превалирование момента силы мышцы или группы мышц приводит к преодолевающей работе, а уменьшение момента силы мышцы – к уступающей работе.

    Различают еще баллистическую работу мышц, которая является разновидностью преодолевающей работы: мышца совершает быстрое сокращение и последующее расслабление, после которого костное звено продолжает движение по инерции.

      (10) Виды и режимы сокращения скелетной мышцы. Одиночное мышечное сокращение, его фазы. Тетанус и его виды. Оптимум и пессимум раздражения.

      Виды сокращений .

      У скелетной мышцы выделяют одиночное сокращение и суммированное сокращение (тетанус).

      Одиночное сокращение - это сокращение, которое возникает на одиночный стимул, достаточный для вызова возбуждения мышцы.

      Фазы одиночного мышечного сокращения :

      Латентный период. Представляет собой сумму временных задержек, обусловленных возбуждением мембраны мышечного волокна, распространением ПД по Т-системе внутрь волокна, образованием инозитолтрифосфата, повышением концентрации внутриклеточного кальция и активации поперечных мостиков. Для портняжной мышцы лягушки латентный период составляет около 2 мс.

      Период укорочения, или развития напряжения.

      Период расслабления, когда уменьшается концентрация ионов Са2+ и головки миозина отсоединяются от актиновых филаментов.

      При воздействии на мышцу ритмических раздражений высокой частоты наступает сильное и длительное сокращение мышцы, которое называется тетаническим сокращением , или тетанусом.

      Тетанус может быть зубчатым (при частоте раздражений 20-40 Гц) или гладким (при частоте 50 Гц и выше). Амплитуда тетанического сокращения в 2–4 раза выше амплитуды одиночного сокращения при той же силе раздражения.

      Гладкий тетанус возникает тогда, когда очередной импульс раздражения действует на мышцу до начала фазы расслабления. При очень большой частоте раздражений каждое очередное раздражение будет попадать на фазу абсолютной рефрактерности и мышца вообще не будет сокращаться. Высота мышечного сокращения при тетанусе зависит от ритма раздражения, а также от возбудимости и лабильности, которые изменяются в процессе сокращения мышцы. Тетанус наиболее высокий при оптимальном ритме, когда каждый последующий импульс действует на мышцу в фазу экзальтации, вызванной предыдущим импульсом. В этом случае создаются наилучшие условия (оптимум силы и частоты раздражения, оптимум ритма) для работы мышцы.

      При тетанических сокращениях мышечные волокна утомляются больше, чем при одиночных сокращениях. Поэтому даже в пределах одной мышцы происходит периодическая смена частоты импульсации (вплоть до полного исчезновения) в разных двигательных единицах.

      Для скелетной мышцы характерны два основных режима сокращения - изометрический и изотонический.

      Изометрический режим проявляется в том, что в мышце во время ее активности нарастает напряжение (генерируется сила), но из-за того, что оба конца мышцы фиксированы (например, мышца пытается поднять большой груз), она не укорачивается.

      При изотоническом режиме мышца первоначально развивает напряжение (силу), способную поднять данный груз, а потом укорачивается (меняет свою длину, сохраняя напряжение, равное весу поднимаемого груза).

      Оптимум – уровень силы или частоты раздражений, при котором осуществляется максимальная деятельность органа или ткани. Явление О. описано Н. Введенским, который на нервно-мышечном препарате лягушки установил, что нарастание до некоторого предела частоты или силы раздражений усиливает длительное, слитное сокращение мышцы - тетанус. О. объясняют тем, что в этих случаях каждое последующее раздражение падает на мышцу в период повышенной её возбудимости, вызванной предыдущим раздражением.

      Пессимум - угнетение деятельности органа или ткани, вызываемое чрезмерной частотой или силой наносимых раздражений. Это явление было описано Н. Введенским. Исследуя особенности проведения нервного импульса в нервно-мышечном препарате лягушки, он обнаружил, что усиление тетануса, вызываемое постепенным возрастанием частоты или силы раздражений, при дальнейшем их учащении или усилении, внезапно сменяется расслаблением мышцы и полным торможением её активности. Введенский трактовал это явление с позиций разработанной им теории парабиоза . Согласно этой теории, работоспособность нервных окончаний, передающих импульсы мышце, после прохождения волны возбуждения резко падает, и для восстановления их работоспособности требуется некоторое время (в нервно-мышечном препарате икроножной мышцы лягушки - 0,02-0,03 сек). Это время определяет функциональные возможности нервных окончаний - их лабильность . Если интервал между раздражениями меньше этого необходимого периода, то есть если он превышает лабильность нервных окончаний, в них развивается своеобразное стойкое нераспространяющееся возбуждение - парабиоз , блокирующее проведение нервных импульсов к мышце и тормозящее тем самым её активность, предохраняя от переутомления. Описываемое явление носит обратимый характер: снижение интенсивности раздражения восстанавливает мышечное сокращение.

    Все, кто любит спорт, знают, конечно, имя замечательного советского спортсмена, рекордсмена мира по прыжкам в длину Игоря Тер-Ованесяна . Но не всем, вероятно, известно, что однажды, после неудачного падения во время лыжной тренировки, Игорь услышал от врачей:

    – Вы больше не спортсмен, молодой человек.

    Нет, нога не была сломана, но частично были повреждены мышечные и нервные волокна, наступила атрофия мышц – уменьшение ее в размерах, ослабление, что бывает при длительном бездействии или нарушении питания мышцы.

    Приговор был тяжелым, но… через два с половиной года Игорь установил новый рекорд мира. Как же это могло произойти? «Чудо» сотворил спорт.

    Сам спортсмен, уезжая домой, говорил друзьям:

    — Буду потихоньку тренироваться. Я верю в поистине чудодейственную силу физических упражнений – они еще никого никогда не подводили.

    И вот «чудо» произошло. В июне 1962 года на соревнованиях в Ереване Игорь Тер-Ованесян прыгнул на 8 метров 31 сантиметр. А совсем недавно, в октябре 1967 года, на предолимпийских соревнованиях в Мехико Игорь довел рекорд Европы в прыжках в длину до 8 метров 35 сантиметров. Это повторение мирового рекорда американского спортсмена Ральфа Бостона .

    Сила мышц человека

    «Мышечное сокращение – это одно из удивительных явлений в живом мире. Поистине чудо, что мягкий студень может внезапно становиться твердым, изменять свою форму и поднимать груз, вес которого в тысячу раз выше его собственного, да притом еще делать это не один раз. Мышца, без сомнения, один из интереснейших экспонатов в богатом музее природы ». Эти слова принадлежат известному венгерскому ученому Сент-Дьёрди.

    Каждый знает, что даже самое простое движение осуществляется при участии многих мышц. Одни обеспечивают основное движение, другие – плавность и соразмерность движений.

    Они позволяют человеку осуществлять бесконечное многообразие движений с различной силой сокращений. Ведь иногда надо поднять с пола спичку, а иногда тяжелую гирю.

    От чего же зависит сила мышечного сокращения ? Все от тех же нервных импульсов, о которых мы уже говорили.

    Вообще в организме мышцы никогда не бывают вполне расслабленными. Это постоянное их напряжение называется тонусом (от греческого слова «тонос» – напряжение). Интересно, что мышечный тонус сохраняется без всякой затраты энергии. Это и понятно: ведь энергию приходится затрачивать тогда, когда нужно выполнить какую-то работу.

    Вот простой пример. На стене висит картина. Казалось бы, что гвоздь, на котором она держится, многие годы верно выполняет свою службу. А ведь с точки зрения физики он «безработный», так как никакой видимой энергии при этом не затрачивает.

    Но почему же человек устает, если неподвижно сидит или несет тяжесть, скажем, под уклон? Ведь кастрюля, стоящая на столе, «не устает», даже если она наполнена водой.

    Конечно, любому школьнику понятно, что стоящий человек по сравнению с любым неодушевленным предметом непрерывно работает – он должен поддерживать равновесие. Идущий человек работает еще энергичнее – ему с каждым шагом приходится поднимать тяжесть собственного тела. И энергия эта буквально «уходит в землю»: она передается почве, вызывая ее сотрясение. Чем больше весит тело человека и груз, который он несет, тем больше расходуется энергии.

    Энергия, энергетические процессы … Те, что происходят в живом организме, очень сложны. Найти для этих процессов какое-либо подобие в технике пока нельзя. Ни одна тепловая машина не работает так экономно и не имеет такого высокого коэффициента полезного действия, как живая мышца. КПД мышцы приближается к 50 процентам, тогда, как, например, у паровых машин он почти в 10 раз ниже – 5–7 процентов.

    Наши мышцы обладают и еще одним ценным качеством – они могут работать «в долг», за счет собственных энергетических запасов.

    Кто бегал стометровку, тот знает: за те 10–14 секунд можно успеть сделать всего один-два вдоха. Да и кровь за этот короткий промежуток времени, конечно, не успеет доставить мышцам нужное им количество кислорода. Для этого ей пришлось бы протекать по кровеносным сосудам в десятки раз быстрее, чем обычно.

    Но вот спринтер у финиша, он еще бежит несколько метров, потом идет шагом, останавливается. Теперь он дышит часто и глубоко, сердце его бьется значительно быстрее и с каждым ударом выбрасывает в сосуды намного больше крови , чем до старта.

    Конечно, мышца не может работать «в долг» неограниченное время. Наступает момент, когда ее энергетические запасы истощаются – мышца устает. И этому есть характерные примеры.

    Кто видел когда-нибудь на стадионе бег на 400 метров? Это зрелище очень хорошо иллюстрирует умение наших мышц работать «в кредит».

    Сначала бегуны несутся как настоящие спринтеры; в таком темпе они пробегают первые 200 метров. Может быть, удается пробежать и еще 100 метров в том же темпе. Но картина бега резко меняется: как будто тяжелый груз придавливает спортсменов к земле, причем всех почти одновременно. Кажется, что бегут они, как говорится, только волей, «на нервах».

    «Скисли!» – презрительно заметит иной неопытный болельщик или случайный зритель. Но ведь это совсем не так. И если кто хоть раз, пробегая эту дистанцию, испытал на себе ни с чем не сравнимое чувство свинцовой тяжести вблизи трехсотметровой отметки, тот никогда так не скажет.

    Почему мышцы устают?

    Первые две стометровки мышцы бурно расходуют энергию, и подходит момент, когда запасы ее истощились, а переработанные вещества – продукты обмена, ненужные организму (например, так называемая молочная кислота – один из конечных продуктов распада гликогена – животного крахмала),– не успели удалиться.

    В это время спортсмен как раз и ощущает сильное мышечное утомление, и бег намного замедляется: мышцы, использовав все оставшиеся запасы энергии и питания, работают практически без доставки кислорода. Но вот кровь начинает циркулировать быстрее, дыхание и сердцебиение учащаются. Мышцы снова начинают получать достаточное количество кислорода. Сила мышц вновь возрастает.

    Такого тяжелого перелома не бывает, если спортсмен бежит на длинную дистанцию. У стайера утомление накапливается постепенно, но тоже иногда достигает такой степени, что впору сходить с беговой дорожки. Так иногда и поступают новички. Если же силы воли и опыта хватает и бег продолжается, то бегун вдруг ощущает прилив новых сил. Спортсмены образно назвали его «вторым дыханием ». Это значит, что мышцы, как и весь организм, приспособились к новому ритму работы.

    И, наконец, мышцы обладают еще одним важным свойством – способностью к тренировке .


    Факторы, влияющие на величину силы мышцы:

    1) длина мышцы: длинные мышцы сокращаются на большую
    величину, чем короткие (укорочение мышцы происходит на 1/3, иногда на

    2) количество мышечных волокон (чем большее количество волокон
    входит в состав мышцы, тем больше ее сила);

    3) толщина мышечных волокон (толстые волокна развивают
    большее напряжение, чем тонкие);

    4) направления волокон, составляющих мышцу (с косыми волокнами
    сила мышцы больше, т.к. у них больше физиологическое поперечное
    сечение, большая подъемная сила);

      исходная длина мышцы (эффективнее работает мышца после ее умеренного растяжения);

      величина площади прикрепления мышцы (чем больше площадь прикрепления, тем большую силу может развить мышца);

    54 1) плечо силы (чем больше плечо силы мышечной тяги, тем

    больше сила мышцы);

    8) иннервация (чем большее количество мотонейронов,

    иннервирующих данную мышцу, возбуждено, тем больше двигательных

    единиц приведено в действие, тем больше величина напряжения или

    сокращения мышцы; при учащении нервных импульсов, приходящих к

    мышце, ее сократительная сила возрастает).

    Различают абсолютную и относительную силу мышц.

    Относительная сила мышцы - это отношение ее максимальной силы к анатомическому поперечнику (площади поперечного сечения мышцы, проведенного перпендикулярно ее длине).

    Абсолютная сила мышцы - это отношение ее максимальной силы к физиологическому поперечнику (сумме площадей поперечных сечений всех мышечных волокон, образующих мышцу). Рисунок 1.

    Рис. 1. Схема анатомического (сплошная линия) и физиологического (прерывистая

    линия) поперечников мышц различной формы: / - лентовидная мышца, // - веретенообразная мышца, /// - одноперистая мышца

    Для характеристики сократительной способности большое значение

    имеет определение абсолютной силы мышцы. Необходимо иметь в виду,

    что физиологический поперечник (т.е. площадь поперечного сечения всех

    волокон мышцы в целом) часто не совпадает с анатомическим

    поперечником (т.е. площадью поперечного сечения мышцы). Это

    Статическая

    это работа, при которой

    мышечные волокна

    развивают напряжение,

    но практически не

    укорачиваются; движения

    тела или его частей не

    происходит.

    1) удерживающая

    работа при выполнении данной

    работы видимого

    действия не наблюдается,

    но мышца сокращена;

    происходит

    уравновешивание

    действия сопротивления,

    моменты силы тяги

    55
    совпадение есть только у параллельноволокнистых и

    веретенообразных мышц, построенных из длинных мышечных волокон. У

    перистых мышц, по типу которых постороено большинство скелетных

    мышц человека, физиологический поперечник несколько больше

    анатомического. Благодаря этому перистые мышцы являются более

    сильными, чем параллельноволокнистые или веретенообразные.

    Абсолютная сила мышц человека выражается в среднем следующими

    величинами (в килограммах на 1 см 2): икроножная + камбаловидная -

    6,24; разгибатели шеи - 9,0; жевательные - 10,0; двуглавая плеча - 11,4;

    плечевая - 12,1; трехглавая плеча - 16,8.

    Между силой и скоростью сокращения мышцы существует

    определенное соотношение: чем выше сила, развиваемая мышцей, тем

    меньше скорость ее сокращения, и наоборот, с нарастанием скорости

    сокращения падает величина усилия (соотношение сила - скорость, по А.

    2. Понятие о мышцах - антагонистах и мышцах-синергистах. Виды работы мышц

    Выполнение любого двигательного акта представляет собой результат содружественного действия ряда отдельных мышц, так как на любой сустав действует не одна, а несколько мышц. В функциональном отношении в зависимости от направления усилий, развиваемых теми или иными мышцами, их принято делить на синергисты и антагонисты.

    Под синергистами понимают такие мышцы, которые образуют содружественно работающие комплексы, обуславливающие возможность выполнения определенного движения. Например, мышцы живота, работая содружественно, осуществляют наклон туловища.

    Отдельные мышцы или группы мышц, участвующие в различных движениях, противоположно направленных, принято называть антагонистами. Например, группа мышц, которая сгибает стопу, является

    56 антагонистом по отношению к той группе, которая ее разгибает, т.е.

    мышцы, расположенные на задней и на передней поверхностях голени, -

    антагонисты.

    Деление это условно, т.к. при определенных условиях мышцы-антагонисты могут работать как синергисты. Так, мышцы-сгибатели и мышцы-разгибатели туловища, работая совместно, осуществляют наклон туловища в сторону, т.е. работают как синергисты. Согласованная работа мышц-антагонистов и мыпщ-синергистов обеспечивает плавность движений и предотвращает травмы.

    В спортивной практике мышцы выполняют различные виды работ. В одних случаях работа приводит к движению, в других - к удержанию позы, фиксации какого-то положения.

    Виды работы мышц

    Динамическая

    это работа, при которой мышечные волокна

    укорачиваются или удлиняются, и происходит

    перемещение груза и движение костей в суставах.

    ^преодолевающая работа

    мышцей какого-либо

    сопротивления или силы

    тяжести данного звена

    тела, когда момент силы

    тяги мышцы (группы

    мышц) больше момента

    силы тяжести.



    57

    Например: на ладонь положили груз, который удерживается на вытянутой руке - это работа удерживающая. Если ладонь с грузом поднимается вверх, то это работа - преодолевающая, если ладонь под действием силы тяжести пошла вниз - уступающая работа.

    3. Работа мышц по принципу рычага

    Мышцы, сокращаясь, приводят в движение кости и действуют при этом как рычаги.

    Рычаг - это всякое твердое тело, закрепленное в одной точке, вокруг которой происходит движение.

    Обязательными элементами рычага являются:

      точка опоры;

      точка приложения силы;

      плечо рычага - это расстояние от точки опоры до точки приложения силы;

      плечо силы - это кратчайшее расстояние от точки опоры до линии действия силы (рис. 2).

    Рис.2. Схема рычага. Плечи рычага (ОА и ОБ), плечи сил (ОА1 и ОБ1).

    Если сила тяжести действует под прямым углом, то плечо силы и плечо рычага совпадают по величине.

    Если речь идет о двигательном аппарате человека, то таким твердым телом является кость. Точкой опоры, вокруг которой происходят движения, является сустав. Само движение происходит за счет силы тяги мышц.

    Костные рычаги - х это звенья тела, подвижно соединенные в суставах под действием приложенных сил. Они служат для передачи движения и работы на расстояние.

    Различают два вида рычагов: первого и второго рода. Если две силы (сила тяжести и сила тяги мышц) приложены по разные стороны от точки опоры рычага и действуют в одном направлении, то тело является рычагом первого рода. Этот рычаг двуплечий, т.к. плечо силы тяжести и силы тяги мышц расположены по обе стороны от точки опоры, образуя соответственно два равных плеча. Такой рычаг является рычагом равновесия.

    Примером рычага первого рода является соединение позвоночника с черепом, т.е. атлантозатылочный сустав. Его еще называют суставом равновесия, так как сила тяжести черепа уравновешивается силой тяги мышц затылка (рис.3).

    Мышечную силу оценивают по максимальной силе, развиваемой мышцей или группой мышц при сокращении. Слабость или неравномерный тонус мышц может мешать движению, и эти нарушения должны быть устранены в процессе медицинской реабилитации. Мышечная Сила зависит от целого ряда факторов: физиологических, биомеханических, нервно-мышечных. В зависимости от фазы заживления используются разные методы увеличения мышечной силы, так как в каждой из фаз различаются и задачи, и достижимые уровни работоспособности.

    Максимальная сила, которую может развить мышца, напрямую зависит от физиологической площади поперечного сечения мышечных волокон: с увеличением диаметра мышцы растет и сила. На силу влияет также длина мышцы перед сокращением: мышца способна развить максимальную силу , если перед сокращением она находилась в расслабленном состоянии (сохраняла «длину покоя»), когда нити актина и миозина связаны максимальным числом поперечных мостиков (зона перекрывания актиновых и миозиновых нитей максимальна). По мере укорочения мышцы сила уменьшается, так как уменьшается и возможность миофиламентов сдвигаться далее относительно друг друга. При растяжении мышечных волокон до большей, чем в покое, длины сила уменьшается, но повышается пассивное напряжение. Таким образом, растяжение соединительной ткани фактически приводит к приросту силы. Следовательно, общая сила, развиваемая мышцей (включая активную сократительную силу и пассивное напряжение), увеличивается по мере удлинения мышцы.

    Сила зависит от сократительных свойств мышечных волокон. Выделяют несколько типов мышечных волокон, различающихся силой и скоростью сокращения и устойчивостью к утомлению. Красные, или медленные, волокна характеризуются незначительной силой, но устойчивы к утомлению. Промежуточные и белые, или быстрые, волокна способны развивать значительное напряжение, но быстро утомляются. Таким образом, сила сокращения в значительной степени зависит от содержания в разных типов.

    Очередность вовлечения мышечных волокон зависит от вида нагрузки. При не тяжелой нагрузке, требующей выносливости, первыми активируются мелкие мотонейроны, иннервирующие красные мышечные волокна. По мере того как потребность в силе возрастает, начинают активироваться крупные мотонейроны, иннервирующие белые мышечные волокна.

    Помимо типа волокон на силу влияют скорость и тип мышечного сокращения. Наибольшая сила достигается при эксцентрических сокращениях, когда мышца, сокращаясь, удлиняется. По мере увеличения скорости сокращения начинает расти напряжение, отчасти вследствие усиления сухожильного рефлекса и растяжения последовательных упругих элементов. Концентрические сокращения всегда дают меньшую силу. По мере того как мышца укорачивается и скорость сокращения возрастает, отмечается снижение общего напряжения, так как мышце не хватает времени для развития силы. Существует обратная зависимость между скоростью укорочения мышцы при концентрических сокращениях и развиваемой ею силой. Чтобы мышечное сокращение достигло соответствующего напряжения и мышца не утомлялась, ей необходимы достаточные запасы энергии и хорошее кровоснабжение. На силу, развиваемую мышцей, влияет также характер спортсмена, так как выраженность мотивации и желание прикладывать усилие, чтобы развить максимальную силу , зависят от человека.

    В основе увеличения мышечной силы лежат такие изменения, как гипертрофия и гиперплазия. Гипертрофия - это увеличение размеров мышечных волокон вследствие увеличения в них числа сократительных белков и миофибрилл и повышение плотности капиллярной сети, окружающей мышечные волокна. Возможен также прирост соединительнотканного компонента мышцы. Показано, что силовые упражнения с большим отягощением вызывают избирательную гипертрофию белых мышечных волокон. Начальный эффект силовых упражнений, вероятнее всего, основан не на структурных, а на функциональных изменениях - преимущественно на двигательном навыке, который сопровождается более активным вовлечением и лучшей синхронизацией двигательных единиц. Гиперплазия - это увеличение числа мышечных волокон за счет их продольного расщепления. Возможность гиперплазии у человека спорна, но она подтверждена у лабораторных животных, подвергавшихся интенсивной силовой тренировке.

    Сила напрямую связана со степенью напряжения сокращающейся мышцы . Увеличение мышечной силы возможно только в том случае, если мышца будет испытывать все большие и большие перегрузки, превосходящие уровень ее аэробного метаболизма. Перегрузки создаются либо за счет увеличения сопротивления, либо за счет увеличения сокращений, либо за счет того и другого. В результате такой тренировки, вызывающей гипертрофию и активацию двигательных единиц, достигается повышение напряжения.

    Понимание этой темы позволит вам регулярно повышать рабочие веса в абсолютно любом упражнении, избегая так называемого «плато». Если вы грезите большими мышечными объемами, обязательно прочитайте нижеприведенную информацию.

    Бытует мнение, согласно которому сила мышцы напрямую зависит от её объёма, то есть чем больше мышечная группа, тем большую силу она может развить. Данное высказывание верно лишь отчасти. Постараемся объяснить почему.

    Влияние нервной системы
    Прежде всего, необходимо вспомнить базовый курс физиологии. Скелетные мышцы человека обладают удивительным свойством - они могут работать не всей массой, а лишь определенными частями. Грубо говоря, именно этот факт позволяет нам регулировать силу.

    Управление сократительной активностью мышц происходит с помощью мотонейронов – особых клеток нервного типа, которые находятся в спинном мозге. Именно отсюда по специальным каналам (аксонам) в каждую мышцу посылается сигнал той или иной мощности. В то же время ветки аксона непосредственно возле мышечной группы разветвляются на огромное количество канальцев, каждый из которых подведен к отдельной мышечной клетке – симпласту.

    Чем сильнее сигнал поступает от мотонейронов, тем большее количество мышечных волокон включается в работу. Именно так мы регулируем силу и скорость мышечного сокращения, однако показатель максимальной силы зависит совсем от других факторов.

    Тетанус
    Для того чтобы продолжить, необходимо ввести термин тетанус – это состояние длительного непрерывного сокращения. Данный процесс наблюдается при подъеме рабочего веса (позитивное движение), при опускании (негативное движение) и при статическом удержании.

    Сила тетануса зависит от характера и скорости сокращения мышц. Следует помнить: чем быстрее сокращается мышца, тем меньшую силу она может создать . Следовательно, максимальная скорость сокращения мышечного волокна наблюдается при отсутствии внешней нагрузки. В то же время максимальная сила развивается при негативном движении, например в опускании штанги при жиме лежа.

    Влияние типов мышечных волокон Как уже говорилось выше, сокращение мышцы начинается с сигнала ЦНС, который поступает в мотонейрон, а оттуда по аксонам к мышцам. Силу сигнала контролирует человеческий мозг, и чем сильнее воздействие на мотонейрон, тем выше частота импульса поступающего по аксонам.

    Для ходьбы, как правило, достаточно 4-5 Гц, однако максимальная частота может превышать 50 Гц. В спинном мозге существуют мотонейроны как быстрого, так и медленного типа. Первые могут создавать высокочастотный импульс, который вызовет гораздо большую силу, нежели частоты медленных мотонейронов. Интересным фактом является то, что все быстрые мотонейроны подключены к быстрым мышечным волокнам (белым), а медленные в свою очередь к одноименным (красным).

    Сила мышечной группы так же зависит от самой банальной характеристики – количества активных в данный момент волокон. Люди, у которых количество быстрых (белых) мышечных волокон преобладает, могут похвастаться большей силой, так как за единицу времени могут задействовать большее число мышечных клеток.

    Люди с преимущественно красными (медленными) волокнами не выделяются силовыми результатами, зато они сильнее предрасположены к совершению длительной работы с умеренной нагрузкой.

    Защитные механизмы
    Нельзя не отметить существование целой защитной системы под названием органы Гольджи, которые находятся непосредственно в сухожилиях. Они играют роль «сканеров», которые проверяют каждый сигнал, посланный из ЦНС.

    При регистрации слишком сильного напряжения, потенциально опасного для костей и суставов, органы Гольджи оказывают угнетающее и тормозящее действие на все активные мотонейроны. В итоге по аксонам идет заниженный сигнал, что в свою очередь заметно ослабляет ту или иную мышечную группу. К сожалению, зачастую данный процесс начинается задолго до реальной опасности. Организм лишний раз подстраховывается, вследствие чего органы Гольджи работают «с запасом».

    Однако не все так плохо, ведь данная характеристика тренируется. Регулярные субмаксимальные нагрузки способствуют повышению порога возбудимости органов Гольджи. Кроме того стоит учесть, что некоторые люди от рождения обладают хорошо развитой сухожильной системой, вследствие чего проявляется так называемая сверхсила.

    Влияние мышечного энергообмена
    Еще одним важным фактором, влияющим на силу мышечной группы, является режим , в котором выполняетсся то или иное упражнение.

    Естественно каждый читатель знает о том, что максимальный рабочий вес, то есть сила, зависит и от количества времени под нагрузкой (количества повторений).

    В рамках данной темы достаточно отметить, что исходный уровень АТФ и КрФ заметно влияет на возможный рабочий вес отягощения в любом упражнении. Однако стоит помнить, что у некоторых людей, и в частности спортсменов со стажем, уровень энергетических ресурсов достаточно высок, и прием креатиновых добавок в этом случае не поспособствует заметному увеличению силы. В то же время, новичок с заведомо низким уровнем КрФ и АТФ может получить невероятный скачок в силе, за счет банального употребления креатина.

    В случае с 8-12 повторениями, ключевую роль играет не количество фосфатов, а каскад других характеристик, таких как: способность сопротивляться лактату (молочной кислоте), количество гликогена мышц, частота мотонейронных сигналов и других. Также стоит отметить, важность активности фермента АТФазы , который расщепляет АТФ и дарит нам энергию.

    Данная характеристика всецело зависит от кислотности среды. Так, в нейтральной среде (pH=7) данный фермент показывает отличную работоспособность, но как только в мышечной группе начнут появляться кислые продукты метаболизма, активность АТФазы начнет спадать к нулю. Если в диапазоне повторений 1-6 лактата нет, то при 8-12 рабочих движениях, молочная кислота непременно понизит ваши силовые характеристики.

    Практические выводы
    Резюмируем всё вышесказанное. Итак, сила мышц зависит от следующих факторов:

    • Силы и частоты сигналов ЦНС и мотонейронов соответственно;
    • Количества мышечных волокон, в частности быстрого (белого) типа;
    • Высокого порога возбудимости органов Гольджи, то есть от крепости связок и суставов;
    • Количества гликогена, АТФ, КрФ или способности противостоять лактату, при том или ином количестве повторений.

    Теперь, зная какие факторы влияют на силу мышц, вы можете развивать каждую отдельную характеристику, будь то нервная система или количество КрФ.

    Выбор тренировочной цели зависит от того, какую силу вы развиваете: на 1-6 повторений или на 8-12. Необходимо помнить, что у любой характеристики есть свой предел развития. Если вы столкнулись с застоем, попробуйте сменить тренировочную цель. Как правило, достаточно поменять количество повторений.

    Стоит отметить, что любая тренировка и развитие силы в целом, увеличивает количество мышечных волокон и объем мускулатуры. Именно поэтому все представители силовых видов спорта обладают хорошим телосложением.



  • mob_info