Тела и поверхности вращения. Вписанные и описанные фигуры

Сфера, вписанная в цилиндр

Сфера называется вписанной в цилиндр, если она касается его оснований и боковой поверхности (касается каждой образующей). При этом цилиндр называется описанным около сферы.

В цилиндр можно вписать сферу, если высота цилиндра равна

диаметру его основания.

Ее центром будет точка O , являющаяся

серединой отрезка, соединяющего центры оснований O 1 и O 2 цилиндра.

Радиус сферы R будет равен

радиусу окружности основания цилиндра.


Упражнение 1

В цилиндр высоты 2 вписана сфера. Найдите ее радиус.


Упражнение 2

В цилиндр вписана сфера радиуса 1. Найдите высоту цилиндра.


Упражнение 3

2. Какой должна быть высота цилиндра, чтобы в него можно было вписать сферу?


Упражнение 4

Высота цилиндра равна 2. Каким должен быть радиус основания цилиндра, чтобы в него можно было вписать сферу?


Упражнение 5

Осевым сечением цилиндра является прямоугольник со сторонами 1 и 2. Можно ли в этот цилиндр вписать сферу?

Ответ: Нет.


Упражнение 6

Осевым сечением цилиндра является квадрат. Можно ли в этот цилиндр вписать сферу?

Ответ: Да.


Упражнение 7

Можно ли вписать сферу в цилиндр, осевым сечением которого является ромб?

Ответ: Нет.


Упражнение 8

Можно ли вписать сферу в наклонный цилиндр?

Ответ: Нет.


Упражнение 9

Площадь осевого сечения цилиндра, в который вписана сфера, равна 4 см 2 . Найдите диаметр сферы.

Ответ: 2 см.


Упражнение 10

Периметр осевого сечения цилиндра, в который вписана сфера, равен 8 см. Найдите радиус сферы.

Ответ: 1 см.


Упражнение 1 1

Какой наибольший радиус может быть у сферы, помещающейся в цилиндр, радиус основания которого равен 2, и высота 1.

Ответ: 0,5 см.


Упражнение 12

Можно ли сферу радиуса 1 поместить в наклонный цилиндр, радиус основания которого равен 1, а боковое ребро равно 2 и наклонено к плоскости основания под углом 60 о.

Ответ: Нет.


Упражнение 13

Какой наибольший радиус может быть у сферы, помещающейся в наклонный цилиндр, радиус основания которого равен 1, а боковое ребро равно 2 и наклонено к плоскости основания под углом 60 о.


Сфера, описанная около цилиндра

Цилиндр называется вписанным в сферу, если окружности оснований цилиндра лежат на сфере. При этом сфера называется описанной около цилиндра.

Около любого цилиндра можно описать сферу. Ее центром будет точка O , являющаяся серединой отрезка, соединяющего центры оснований O 1 и O 2 цилиндра.

Радиус сферы R вычисляется по формуле

где h – высота цилиндра, r – радиус окружности основания.

В режиме слайдов ответы и решения появляются после кликанья мышкой


Упражнение 1

Диагональ осевого сечения цилиндра равна 2. Найдите радиус сферы, описанной около этого цилиндра.


Упражнение 2

Около цилиндра высоты 2 и радиуса основания 1 описана сфера. Найдите ее радиус.


Упражнение 3

Около цилиндра, радиус основания которого равен 1, описана сфера радиуса 2. Найдите высоту цилиндра.


Упражнение 4

Около цилиндра, высота которого равна 1, описана сфера радиуса 1. Найдите радиус основания цилиндра.


Упражнение 5

Найдите наименьший радиус сферы, в которую помещается наклонный цилиндр, радиус основания которого равен 1, образующая равна 2 и наклонена к плоскости основания под углом 60 о.


Цилиндр, вписанный в призму

Ц илиндр называется вписанным в призму, если е го основания в писаны в основани я цилиндра. При этом, призма называется описанной около цилиндра

В призму можно вписать цилиндр тогда и только тогда, когда

в ее основание можно вписать окружность.

Радиус основания цилиндра равен

радиусу окружности, вписанной в основание призмы.

В режиме слайдов ответы и решения появляются после кликанья мышкой

Высота цилиндра равна

высоте призмы.


Упражнение 1

Можно ли вписать цилиндр в наклонную призму?

Ответ: Да, наклонный цилиндр.


Упражнение 2

В основании прямой призмы правильный треугольник со стороной 1. Найдите радиус окружности основания цилиндра, вписанного в эту призму.


Упражнение 3

В основании прямой призмы прямоугольный треугольник с катетами 6 и 8. Найдите радиус окружности основания цилиндра, вписанного в эту призму.


Упражнение 4

Найдите радиус окружности основания цилиндра, вписанного в единичный куб.


Упражнение 5

В правильную шестиугольную призму, со стороной основания 1, вписан цилиндр. Найдите радиус окружности основания этого цилиндра.


Цилиндр, описанный около призмы

Ц илиндр называется описанным около призмы, если е го основания о писаны около основани й цилиндра. При этом, п ризма называется вписанной в цилиндр

Около призмы можно описать цилиндр, если около ее оснований можно описать окружности.

Радиус основания цилиндра равен

радиусу окружности, описанной около основания призмы.

В режиме слайдов ответы и решения появляются после кликанья мышкой

Высота цилиндра равна

высоте призмы.


Упражнение 1

Можно ли описать цилиндр около наклонной призмы?

Ответ: Да, наклонный цилиндр.


Упражнение 2

В основании прямой призмы правильный треугольник со стороной 1. Найдите радиус окружности основания цилиндра, описанного около этой призмы.


Упражнение 3

В основании прямой призмы прямоугольный треугольник с катетами 6 и 8. Найдите радиус окружности основания цилиндра, описанного около этой призмы.


Упражнение 4

В основании прямой призмы квадрат со стороной 1. Найдите радиус окружности основания цилиндра, описанного около этой призмы.


Упражнение 5

Около правильной шестиугольной призмы, со стороной основания 1, описан цилиндр. Найдите радиус окружности основания этого цилиндра.


Упражнение 6

Около единичного тетраэдра описан цилиндр так, что вершины тетраэдра принадлежат окружностям оснований цилиндра. Найдите радиус основания и высоту цилиндра.


Упражнение 7

Около единичного октаэдра описан цилиндр так, что две противоположные вершины октаэдра находятся в центрах оснований цилиндра, а остальные вершины принадлежат боковой поверхности цилиндра. Найдите радиус основания и высоту цилиндра.

Многоугольник называется вписанным в выпуклую кривую, а кривая – описанной около многоугольника, если все вершины многоугольника лежат на кривой (рис. 1). Многоугольник называется описанным вокруг выпуклой кривой, а кривая – вписанной в многоугольник, если каждая его сторона касается кривой. Если же кривая касается всех прямых, на которых лежат стороны многоугольника, причем некоторых из них она касается в точках, не принадлежащих сторонам, то она называется вневписанной. В качестве кривой чаще всего рассматривается окружность. Так, например, всякий треугольник имеет одну описанную окружность, одну вписанную и три вневписанных (рис. 2).

Но уже не всякий четырехугольник имеет вписанную или описанную окружность. Описанная вокруг четырехугольника окружность существует лишь в том случае, если сумма его противоположных углов равна 180°. А для того чтобы в четырехугольник можно было вписать окружность, необходимо и достаточно, чтобы каждая сумма длин одной пары противоположных сторон была равна сумме длин второй пары сторон.

Вписанная и описанная окружности существуют у любого правильного многоугольника (рис. 3). Этот факт использовался еще в древности для нахождения отношения длины окружности к ее радиусу.

Нетрудно обнаружить тот факт, что если на плоскости задана замкнутая кривая и равносторонний треугольник, то вокруг всегда можно описать равносторонний треугольник со сторонами, параллельными сторонам данного (рис. 4). Менее очевидным является утверждение о том, что вокруг любой замкнутой кривой можно описать квадрат.

Вписанные и описанные фигуры рассматриваются и в пространстве.

В этом случае вместо многоугольника рассматривается многогранник, а вместо выпуклой линии – выпуклая поверхность, чаще всего сфера.

Сфера называется описанной около многогранника, а многогранник – вписанным в сферу, если все вершины многогранника лежат на сфере. Сфера называется вписанной в многогранник, а многогранник описанным около сферы, если плоскости всех его граней касаются сферы.

У правильных многогранников существуют описанные и вписанные сферы, поскольку вершины правильного многогранника равноудалены от его центра (рис. 5). Для того чтобы у других многогранников существовали описанная и вписанная сферы, требуются определенные условия. Например, около прямой призмы или пирамиды можно описать сферу, если можно описать окружность около ее основания (рис. 6).

Иногда рассматривают конус, вписанный в сферу; сферу, вписанную в конус, цилиндр и т.п. (рис. 7).

На могильной плите Архимеда, как завещал ученый, был изображен цилиндр с вписанным шаром, а эпитафия говорила о величайшем открытии Архимеда о том, что объемы этих тел относятся как 3:2. Когда римский оратор и общественный деятель Цицерон, живший в І в. до н. э., был в Сицилии, он еще видел этот заросший кустами и терновником памятник с шаром и цилиндром.



mob_info