Анатомия человека мышечная система. Строение мышечной системы

Мышечная система относится к одним из самых важных биологических подсистем, с помощью которых организм выполняет различные движения.

Ее можно представить в виде совокупности мышечных волокон, способных к сокращению. Волокна соединяются между собой в пучки, которые формируют мышцы как особые органы, или же сами входят во внутренние органы. гораздо выше, чем других органов: у некоторых животных она составляет 50 процентов всей массы тела, а у человека — 40 процентов. Мышечная система превращает химическую энергию в теплоту и

Мышечная мускулатура

У позвоночных мышечная мускулатура разделяется на такие группы:

  • Соматическая, заключающая в себе внутренности и образующая мышцы конечностей. К ней относятся скелетные мышцы.
  • Висцеральная (входит в состав внутренностей). Это гладкая и сердечная мускулатура.

Мышечная система человека

Скелетные мышцы бывают произвольными и поперечнополосатыми. Они прикрепляются к костям и представляют собой цилиндрические волокна длиной 1-10 см.

Каждое мышечное волокно - это недифференцированная цитоплазма (саркоплазма) с большим количеством ядер, расположенных по периферии. Периферия включает в себя дифференцированные поперечно-полосатые миофибриллы. Окружает периферию прозрачная оболочка (сарколемма), в которую входят коллагеновые фибриллы. Малая группа волокон окружена эндомизием; крупные мышечные соединения представляют собой пучки волокон, заключенных во внутренний перемизий; каждая мышца окружена наружным перемизием. Мышечные и соединительные ткани друг друга продолжают и связаны между собой. Вся мышца заключена в футляр, называемый фасцией. Мышечная система состоит из мышц, каждая из которых соединена с нервами и сосудами и пронизана ими.

Мышцы помогают сохранять равновесие тела, осуществлять перемещение в пространстве и жизненно важные движения всех частей тела.

Гладкие мышцы располагаются в стенках сосудов и внутренних органов. Длина мышц этого вида составляет 0.02-0.2 мм. Они лишены исчерченности, форма их напоминает веретено. Клетки гладких мышц имеют в центре овальное ядро.

Гладкие мышцы способствуют транспортировке того, что содержится в полых органах (пищи в кишечнике, например). Они участвуют в регуляции давления, расширении и других движениях в организме. За сокращение гладких мышц отвечает вегетативная нервная система.

Мышечная система включает также сердечную мышцу, которая есть только в сердечных стенках. Она непрерывно сокращается всю жизнь, обеспечивая кровообращение по сосудам и питая необходимыми веществами ткани и органы.

Костно-мышечная система

В теле человека содержится около 400 мышц поперечнополосатых, которые сокращаются под управлением ЦНС.

Включает мышцы, кости, сухожилия, суставы, связки и хрящи, составляющие почти 75% веса человека. Эта система придает человеческому телу определенную форму, позволяет ему стоять и передвигаться. Остовом для органов и тканей служит костный скелет, он также надежно защищает важные органы от повреждений. В костях накапливаются такие минеральные вещества, как фосфор и кальций. Внутренность костей представлена участвующим в образовании всех клеток крови (эритроцитов, лейкоцитов и кровяных пластинок).

При повреждениях и заболеваниях любой из частей опорно-двигательного аппарата нарушается статика и динамика всего организма. Кроме того, что страдает весь опорно-двигательный аппарат, внутренние органы тоже перестают правильно функционировать. Например, при укорочении одной из конечностей искривляется позвоночник, что вызывает деформацию грудной клетки, как следствие - страдают и дыхания.

Общие сведения о мышцах. В организме человека насчитывается около 600 скелетных мышц (цвет. табл. III, IV). Мышечная система составляет значительную часть общей массы тела человека. Если у новорожденных масса всех мышц составляет 23% массы тела, а в 8 лет - 27%, в 17-18 лет она достигает 43-44%, а у спортсменов с хорошо развитой мускулатурой - даже 50%.

Отдельные мышечные группы растут неравномерно. У грудных детей прежде всего развиваются мышцы живота, позднее - жевательные. К концу первого года жизни в связи с ползанием и началом ходьбы заметно растут мышцы спины и конечностей. За весь период роста ребенка масса мускулатуры увеличивается в 35 раз.

Рис. 38. Строение мышцы:

а - мышца на поперечном разрезе: 1 - пучок мышечных волокон; 2 - отдельные мышечные волокна; б - общий вид скелетной мышцы: 1 - брюшко; 2 - сухожилие

В период полового созревания (12-16 лет) наряду с удлинением трубчатых костей удлиняются интенсивно и сухожилия мышц. Мышцы в это время становятся длинными и тонкими, а подростки кажутся длинноногими и длиннорукими.

Строение мышц

В мышце различают среднюю часть - брюшко, состоящее из мышечной ткани, и сухожилие, образованное плотной соединительной тканью. С помощью сухожилий мышцы прикрепляются к костям, однако некоторые мышцы могут прикрепляться и к различным органам (глазному яблоку), к коже (на лице и шее) и т. д.

Каждая мышца состоит из большого количества поперечнополосатых мышечных волокон (рис. 38), расположенных параллельно и связанных между собой прослойками рыхлой соединительной ткани в пучки. Вся мышца снаружи покрыта тонкой соединительнотканной оболочкой - фасцией.

Мышцы богаты кровеносными сосудами, по которым приносит к ним питательные и , а выносит продукты обмена. Имеются в мышцах и лимфатические сосуды.

В мышцах расположены нервные окончания - рецепторы, которые воспринимают степень сокращения и растяжения мышцы.

Форма и величина мышц зависят от выполняемой ими работы. Различают мышцы длинные, короткие, широкие и круговые. Длинные мышцы располагаются на конечностях, короткие - там, где размах движения мал (например, между позвонками). Широкие мышцы располагаются преимущественно на туловище, в стенках полостей тела (мышцы живота, спины). Круговые мышцы располагаются вокруг отверстий тела и при сокращении суживают их. Такие мышцы называют сфинктерами.

Один из концов мышцы называют началом. Обычно этот конец остается при сокращении неподвижным. Другой конец мышцы называют местом прикрепления или подвижной точкой. В сложных мышцах начало не одно, а могут быть две, три, четыре головки, которые, сливаясь, образуют общее брюшко. Это двуглавые, трехглавые и четырехглавые мышцы.

Разделенным может быть и тот конец мышцы, который называют прикреплением (например, длинный разгибатель пальцев). Брюшко мышцы также может быть поделено сухожилием (дву-

брюшная мышца), а может быть таких сухожильных перемычек много, как, например, в прямой мышце живота.

Работа мышц

Сокращаясь, мышцы выполняют работу. Работу скелетной мышцы определяют произведением веса поднятого груза на высоту его поднятия. Работу мышца совершает только в момент сокращения: она укорачивается, становясь при этом толще, и сближает кости, на которых укреплена. При расслаблении мышца работы не производит. Поэтому движение в любом суставе обеспечивается минимум двумя мышцами, действующими в противоположных направлениях. Такие мышцы называют антагонистами (например, сгибатели и разгибатели). При каждом движении напрягаются не только мышцы, совершающие его, но и их антагонисты, противодействующие тяге и тем самым придающие движению точность и плавность. Приводя в движение кость, мышца действует как рычаг.

Работа мышц зависит от их силы. Мышца тем сильнее, чем больше в ней мышечных волокон, т. е. чем она толще. При поперечном сечении 1 см 2 мышца способна поднять груз до 10 кг.

Человек может длительное время сохранять одну и ту же позу. Это статическое напряжение мышц. К статическим усилиям относятся стояние, держание головы в вертикальном положении и др. При статическом усилии мышцы находятся в состоянии напряжения. При некоторых упражнениях на кольцах, параллельных брусьях, при удержании поднятой штанги статическая работа требует одновременного сокращения почти всех мышечных волокон и, естественно, может быть очень непродолжительной.

При динамической работе поочередно сокращаются различные группы мышц. Мышцы, производящие динамическую работу, быстро сокращаются и, работая с большим напряжением, скоро утомляются. Обычно же различные группы мышечных волокон сокращаются поочередно, что дает возможность мышце длительное время совершать работу. , управляя работой мышц, приспосабливает их работу к текущим потребностям организма. Это дает им возможность работать экономно, с высоким коэффициентом полезного действия (до 25 и 35%). Для каждого вида мышечной деятельности можно подобрать некоторый средний (оптимальный) ритм и величину нагрузки, при которых работа будет максимальной, а утомление будет развиваться постепенно.

Работа мышц - необходимое условие их существования. Длительная бездеятельность мышц ведет к их атрофии и потере ими работоспособности. Тренировка, т. е. систематическая, нечрезмерная работа мышц, способствует увеличению их объема, возрастанию силы и работоспособности, что способствует физическому развитию всего организма.

Мышцы человека даже в состоянии покоя несколько сокращены. Это состояние длительно удерживаемого напряжения называют тонусом мышц. Во время сна, при наркозе тонус мышц несколь-

ко снижается, тело расслабляется. Полностью исчезает мышечный тонус только после смерти. Тонические сокращения мышц не сопровождаются утомлением; благодаря им внутренние органы удерживаются в нормальном положении.

Утомление мышц

После длительной работы происходит снижение работоспособности мышц, которая восстанавливается после отдыха. Такое временное понижение работоспособности называют утомлением.

Развитие утомления связано прежде всего с изменениями, происходящими в центральной нервной системе. При этом нарушается координация движений. При утомлении используются запасы химических веществ, служащих источниками энергии сокращения, накапливаются продукты обмена (молочная кислота и др.).

Скорость наступления утомления зависит от состояния нервной системы, частоты ритма, в котором производится работа, и от величины нагрузки. Утомление может быть вызвано неблагоприятной обстановкой. Неинтересная работа быстрее вызывает наступление утомления.

Физическое утомление -нормальное физиологическое явление. После отдыха работоспособность не только восстанавливается, но и часто превышает исходный уровень. Впервые И. М. Сеченов в 1903 г. показал, что восстановление работоспособности утомленных мышц правой руки происходит значительно быстрее, если в период отдыха производить работу левой рукой. В отличие от простого покоя такой отдых был назван И. М. Сеченовым активным.

Это явление можно объяснить следующим образом. Известно, что работающие мышцы получают импульсы из соответствующих участков нервной системы. При длительной работе происходит утомление ранее всего в нервных центрах, связанных с определенными группами работающих мышц. Оказывается, восстановление работоспособности нервных клеток, посылавших импульсы к мышцам правой руки, происходит быстрее, если нервные клетки, связанные с мышцами левой руки, находятся в состоянии возбуждения.

В основе мышечных сокращений лежат сложные химические превращения органических веществ мышцы. Распад этих веществ сопровождается освобождением энергии, которая идет не только на работу мышц, но и в значительном количестве превращается в тепло. Это тепло согревает тело.

В составе мышечных волокон собственно сократительным аппаратом являются миофибриллы. В поперечнополосатых мышечных волокнах миофибриллы разделены на правильно чередующиеся участки (диски). Одни из этих участков обладают двойным лучепреломлением. В обыкновенном свете под микроскопом они кажутся темными. Это анизотропные участки, их обозначают буквой А. Другие участки в обыкновенном свете выглядят светлыми.


Рис. 39.
А - электронно-микроскопическая картина миофибриллы (схематизировано). Показаны диски AиI, полоски Z и Н. Б, В - взаимное расположение толстых (миозиновых) и тонких (актиновых) нитей в расслабленной (Б ) и сокращенной (В ) миофибрилле

Они не обладают двойным лучепреломлением. Это изотропные диски, обозначаемые буквой I (рис. 39, А).

В середине диска А проходит светлая полоса И, посредине диска I - темная полоса Z. Полоса Z представляет собой тонкую мембрану, сквозь поры которой проходят миофибриллы.

Американскому цитологу Хаксли с помощью электронной микроскопии удалось показать, что каждая из миофибрилл мышечного волокна состоит в среднем из 2500 протофибрилл. Толстые протофибриллы состоят из белка миозина, а тонкие протофибриллы - из белка актина. Согласно представлениям Хаксли, миозин и актин в миофибрилле пространственно отделены друг от друга.

В состоянии покоя мышечного волокна нити расположены в миофибрилле так, что тонкие и длинные актиновые нити входят своими концами в промежутки между толстыми и более короткими миозиновыми нитями (рис. 39, Б). Поэтому диски I состоят только из актиновых нитей, а диски А - из нитей миозина.

Светлая полоска Н свободна от актиновых нитей. Мембрана Z, проходя через середину диска I , скрепляет между собой эти нити.

Согласно представлениям Хаксли, при сокращении миофибрилл происходит вдвижение нитей актина в промежутки между нитями миозина, своеобразное «скольжение» (рис. 39, В ). В результате такого вдвижения длина дисков I укорачивается, а диски А сохраняют свой размер. В связи с тем, что актиновые нити при сокращении сближаются друг с другом своими концами, светлая полоска Н почти исчезает.

Наиболее интересное свойство миозина - его способность расщеплять АТФ. Это свойство миозина открыто советскими биохимиками В. А. Энгельгардтом и М. Н. Любимовой в 1939 г. Под влиянием миозина от молекулы АТФ отщепляется одна молекула фосфорной кислоты. При этом освобождается энергия. Миозин

таким образом является не только сократительным белком, но и одновременно ферментом аденозинтрифосфатазой (АТФ-азой).

Что же заставляет белковые нити «скользить» при сокращении? Механизм этот пока еще не выяснен. Предполагают, что под влиянием ферментативных свойств миозина АТФ-аза толстых нитей расщепляет АТФ, находящуюся на тонких нитях актина. АТФ при этом разрушается и сходит с актиновых нитей. Последние скручиваются, скользят вдоль миозиновых нитей. Очевидно, на этом уровне происходит переход химической энергии расщепления АТФ в механическую энергию движения. Энергию для мышечного сокращения поставляет АТФ. В скелетной мышце содержание АТФ составляет 0,2-0,4%. Этого количества АТФ достаточно примерно для 30 одиночных сокращений мышцы. Однако в нормальных условиях мышца может работать очень долго. Это связано с тем, что в мышце идет процесс ресинтеза, т. е. восстановления АТФ, процесс ее синтеза.

За счет чего синтезируется АТФ в работающей мышце? В мышце есть богатое энергией фосфорное соединение - креа тинфосфат. В молекуле креатинфосфата содержится одна макроэргическая связь:

При гидролитическом расщеплении креатинфосфата образуются креатин и фосфорная кислота. При этом освобождается энергия. Этот процесс происходит под влиянием фермента фосфокиназы. При этом освобождающаяся фосфорная кислота восстанавливает АТФ. Ресинтез АТФ в присутствии креатинфосфата идет в течение тысячных долей секунды. Но при усиленной мышечной работе истощаются запасы креатинфосфата. Тогда важную роль приобретают процессы гликолиза и окисления, протекающие в мышце (см. стр. 29, 34). Окисление молочной и пировиноградной кислот, образующихся в мышце во время сокращения, способствует ресинтезу креатинфосфата и АТФ.

Основные группы мышц человеческого тела

К мышцам туловища относятся мышцы грудной клетки, живота и спины (цвет, табл. V-X).

Мышцы, располагающиеся между ребрами, а также другие мышцы грудной клетки участвуют в функции дыхания и называются дыхательными. К их числу принадлежит и диафрагма.

Мощно развитые мышцы груди приводят в движение и укрепляют на туловище верхние конечности (большая и малая грудные, передняя зубчатая мышцы).

Мышцы живота выполняют различные функции. Они образуют стенку брюшной полости и благодаря своему тонусу удерживают внутренние органы от смещения, опускания, выпадения. Сокращаясь, мышцы живота действуют на внутренние органы в качестве брюшного пресса, что способствует выведению мочи, кала, а также родовому акту. Сокращение мышц брюшного пресса способствует движению крови в венозной системе, осуществлению дыхательных движений. Мышцы живота участвуют в сгибании позвоночного столба вперед.

При слабости мышц живота может произойти не только опущение органов брюшной полости, но и образование грыж. При грыжах происходит выход внутренних органов - кишечника, желудка, большого сальника, почки из брюшной полости под кожу живота.

К мышцам брюшной стенки относятся прямая мышца живота, пирамидальная мышца, квадратная мышца поясницы и широкие мышцы живота - наружная и внутренняя косые и поперечная. По средней линии живота тянется плотный сухожильный тяж. Это белая линия. По бокам от белой линии располагается прямая мышца живота с продольным направлением волокон.

На спине расположены многочисленные мышцы вдоль позвоночного столба. Это глубокие мышцы спины. Они прикрепляются главным образом к отросткам позвонков. Эти мышцы участвуют в движениях позвоночного столба назад и в сторону. К поверхностным мышцам спины относятся трапециевидная мышца и широчайшая мышца спины. Они участвуют в движении верхних конечностей и грудной клетки.

Среди мышц головы различают жевательные мышцы и мимические. К жевательным мышцам относятся височная, жевательная, крыловидные. Сокращения этих мышц вызывают сложные жевательные движения нижней челюсти. Мимические мышцы одним, а иногда и двумя своими концами прикрепляются к коже лица. При сокращении они смещают кожу, вызывая соответствующую мимику, т. е. или иное выражение лица. Круговые мышцы глаза и рта также относятся к числу мимических мышц.

Мышцы шеи запрокидывают голову, наклоняют ее и поворачивают. Лестничные мышцы поднимают ребра, участвуя во вдохе. Мышцы, прикрепленные к подъязычной кости, при сокращений изменяют положение языка и гортани при глотании и произнесении различных звуков.|

Пояс верхних конечностей соединяется с туловищем лишь в области грудино-ключичного сустава. Укреплен пояс верхних конечностей мышцами туловища (трапециевидная, малая грудная, ромбовидная, передняя зубчатая и мышца, поднимающая лопатку).

Мышцы пояса верхних конечностей приводят в движение верхнюю конечность в плечевом суставе. Среди них важнейшая - дельтовидная мышца. При сокращении эта мышца сгибает руку в плечевом суставе и отводит руку до горизонтального положения.

В области плеча спереди расположена группа мышц-сгибателей, сзади-разгибателей. Среди мышц передней группы - двуглавая мышца плеча, задней - трехглавая мышца плеча.

Мышцы предплечья на передней поверхности представлены сгибателями, на задней - разгибателями.

Среди мышц кисти - длинная ладонная мышца, сгибатели пальцев.

Мышцы, расположенные в области пояса нижних конечностей, приводят в движение ногу в тазобедренном суставе, а также позвоночный столб. В переднюю группу мыши- входит одна крупная мышца - подвздошно-поясничргая. Среди задненаружной группы мышц тазового пояса - большая, средняя и малая ягодичные

мышцы.

Ноги имеют более массивный скелет, чем руки; их мускулатура обладает большой силой, но вместе с тем меньшим разнообразием и ограниченным размахом движений. Следующая →

Или же самостоятельно входят в состав внутренних органов. Масса мышц намного больше, чем масса других органов: у позвоночных животных она может достигать до 50 % массы всего тела, у взрослого человека - до 40 %. Мышечная ткань животных также называется мясо и, наряду с некоторыми другими составляющими тел животных, употребляется в пищу. В мышечных тканях происходит превращение химической энергии в механическую энергию и теплоту.

У позвоночных мускулатуру разделяют на две основных группы:

  • Соматическая (т.е. заключенная в стенках полостей тела («сомы»), заключающих в себе внутренности, а также образующая основную массу конечностей):
    • Скелетные мышцы (они же поперечнополосатые, или произвольные). Прикрепляются к костям. Состоят из очень длинных волокн, длина от 1 до 10 см, форма - цилиндрическая. Их поперечная исчерченность обусловлена наличием чередующихся двоякопреломляющих проходящий свет дисков - анизотропных, более темных, и однопреломляющих свет - изотропных, более светлых. Каждое мышечное волокно состоит из недифференцированной цитоплазмы, или саркоплазмы, с многочисленными ядрами расположенными по периферии, которая содержит большое число дифференцированных поперечнополосатых миофибрилл. Периферия мышечного волокна окружена прозрачной оболочкой, или сарколеммой, содержащей фибриллы коллагеновой природы. Небольшие группы мышечных волокон окружены соединительнотканной оболочкой - эндомизием, endomysium; более крупные комплексы представлены пучками мышечных волокон, которые заключены в рыхлую соединительную ткань - внутренний перемизий, perimysium internum; вся мышца в целом окружена наружным перимизием, perimysium externum. Все соединительнотканные структуры мышцы, от сарколеммы до наружного перимизия, являются продолжением друг друга и непрерывно связаны между собой. Всю мышцу одевает соединительнотканный футляр - фасция, fascia. К каждой мышце подходит один или несколько нервов и кровоснабжающие её сосуды. И те и другие проникают в толщу мышцы в области так называемого нервнососудистого поля, area nervovasculosa. С помощью мышц сохраняется равновесие тела, производится перемещение в пространстве, осуществляются дыхательные и глотательные движения. Эти мышцы сокращаются усилием воли под действием импульсов, поступающих к ним по нервам из центральной нервной системы . Характерны мощные и быстрые сокращения и быстрое развитие утомления.
  • Висцеральная (т.е. входящая в состав внутренностей, функционально не приспособленные к передвижению тела в пространстве):
    • Гладкие мышцы (непроизвольные). Они находятся в стенках внутренних органов и сосудов. Для них характерны длина: 0,02 -0,2 мм, форма: веретеновидная, одно ядро овальное в центре, нет исчерчености. Эти мышцы участвуют в транспортировке содержимого полых органов, например, пищи по кишечнику, в регуляции кровяного давления, сужении и расширении зрачка и других непроизвольных движениях внутри организма. Гладкие мышцы сокращаются под действием вегетативной нервной системы . Характерны медленные ритмические сокращения, не вызывающие утомления.
    • Сердечная мышца . Она имеется только в сердце . Эта мышца неутомимо сокращается в течение всей жизни, обеспечивая движение крови по сосудам и доставку жизненно важных веществ к тканям. Сердечная мышца сокращается самопроизвольно, а вегетативная нервная система только регулирует её работу.

В теле человека около 400 поперечнополосатых мышц, сокращение которых управляется центральной нервной системой.

Функции мышечной системы

  • двигательная;
  • защитная (например, защита брюшной полости брюшным прессом);
  • формировочная (развитие мышц в некоторой степени определяет форму тела) и функцию других систем (например дыхательной);
  • энергетическая (превращение химической энергии в механическую и тепловую).

Wikimedia Foundation . 2010 .

Смотреть что такое "Мышечная система" в других словарях:

    МЫШЕЧНАЯ СИСТЕМА - МЫШЕЧНАЯ СИСТЕМА. Содержание: I. Сравнительная анатомия..........387 II. Мышцы и их вспомогательные аппараты. 372 III. Классификация мышц............375 IV. Вариации мышц...............378 V. Методика исследования мышц на хрупе. . 380 VI.… … Большая медицинская энциклопедия

    Мускульная система, совокупность сократит, элементов мышечной ткани, объединённых обычно в мышцы и связанных между собой соединительной тканью. У одноклеточных и низших многоклеточных животных (трихоплакс, губки) М. с. нет. У кишечнополостных… … Биологический энциклопедический словарь

    Совокупность мышц и мышечных пучков, объединенных обычно соединительной тканью. Отсутствует у одноклеточных и губок, хорошо развита у позвоночных (составляет 1/3 1/2 массы тела). Осуществляет движение организма, поддержание равновесия тела, а… … Большой Энциклопедический словарь

    Совокупность мышц и мышечных пучков, объединённых обычно соединительной тканью. Отсутствует у одноклеточных и губок, хорошо развита у позвоночных (составляет 1/3 1/2 массы тела). Осуществляет движения организма, поддержание равновесия тела, а… … Энциклопедический словарь

    Мускульная система, совокупность сократимых элементов, мышечных клеток, объединённых обычно у животных и человека в Мышцы и связанных между собой соединительной тканью. У одноклеточных, губок, кишечнополостных и некоторых бескишечных… … Большая советская энциклопедия

    Совокупность мышц и мышечных пучков, объединённых обычно соединит. тканью. Отсутствует у одноклеточных и губок, хорошо развита у позвоночных (составляет 1/3 1/2 массы тела). Осуществляет движения организма, поддержание равновесия тела, а также… … Естествознание. Энциклопедический словарь

    МЫШЕЧНАЯ СИСТЕМА - (Systema musculorum), совокупность анатомических образований, обеспечивающих изменение положения тела (или его частей) в пространстве. В состав М. с. входят мышцы и их вспомогательные элементы: сухожилия, связки, синовиальные влагалища … Ветеринарный энциклопедический словарь

    МЫШЕЧНАЯ СИСТЕМА - [от греч. systema (целое), составленное из частей, соединение] совокупность сократительных элементов мышечной ткани, объединенных в мышцы и связанных между собой соединительной тканью … Психомоторика: cловарь-справочник

    Мышечная система одна из основных биологических подсистем у высших животных, благодаря которой в организме осуществляется движение во всех его проявлениях. Мышечная система отсутствует у одноклеточных и губок, однако и эти животные не лишены… … Википедия

Книги

  • Атлас секционной анатомии человека Костно-мышечная система , Меллер Т. , Райф Э. , Данная книга - солидный труд, созданный на основе большого опыта и глубоких знаний авторов в области МРТ-диагностики, в котором использован оригинальный способ подачи материала.… Категория:

Мышечная система организма отвечает за передвижение организма в пространстве, контроль равновесия тела, дыхательную периодичность и интенсивность, распределение питательных веществ и крови по организму. Мышечной тканью по средствам химических превращений энергия соединений(поступающих с пищей) используется для создания тепла и механической силы.

Образуют мышечную систему пучки волокон мышц, и которые способны сокращаться что дает им возможность образовать орган, мышцу, либо войти в структуру других внутренних органов.

К функциям данной системы можно отнести следующие : - двигательная- защитная (механическая в виде препятствия на пути повреждения органов, защита тело от перегрева или потери крови при травмах) - формообразующая (придает форму телу) - энергетическая (переработка соединений в энергию)

Контроль осуществляемый мозгом за мышцами весьма условен. Например в силу определенных обстоятельств возможна частичная утеря человеком возможности контролировать мышцы (тремор, парез) либо полная (паралич). В особых условиях (как например холод) контроль за всеми группами мышц ослабевает и проявляет себя дрожь - как механизм согревания организма.


Всего есть 3 вида мышц : скелетные мышцы, или поперечно полосатые. Наиболее заметные (распространенные) и наиболее знакомый тип мышечной ткани. Крепятся к костям и составлены крайне длинными волокнами (1-10 см.) форму имеют в основном цилиндрическую. Участвуют в сохранении положения тела, передвижение, отвечают за глотательные а так же дыхательные движения, в прочем сокращаются они усилиями воли. Координируют сокращение нервные импульсы которые создала центральная нервная система.


Для них характерны сильные и резкие сокращения, как следствие легкая утомляемость. Гладкие мышцы в первую очередь составляют собой стенку сосудов а так же практически всех внутренних органов. Их характерной длиной называют от 0.02 до 0.2мм, хотя и имеют веретено видную структуру. Так же принимают участие в толкании содержимого каждого органа, при необходимости расширении а так же сужении капилляров, зрачка, иных неконтролируемых человеком сокращениях.


Сокращения в большинстве своим медленные и ритмичные, из за чего мало эти мышцы утомляемы. Мышца сердца. Составляет сердце, является сердцем, сокращения постоянны, в течении жизни, гоняя кровь в сосудах, которая доставляет кислород и питательные вещества тканям. Сокращения самопроизвольны, хотя и регулируется вегетативной НС человека. Тело каждого из нас в себе содержит приблизительно около 400 мышц и контроль над ними осуществляется нс.

У позвоночных животных и человека различают три разных по строению группы мышц :

  • поперечно-полосатые мышцы скелета;
  • поперечно-полосатая мышца сердца;
  • гладкие мышцы внутренних органов, сосудов и кожи.

Рис. 1. Виды мышц человека

Гладкие мышцы

Из двух видов мышечной ткани (поперечно-полосатой и гладкой) гладкая мышечная ткань находится на более низкой ступени развития и присуща низшим животным.

Образуют мышечный слой стенок желудка, кишечника, мочеточников, бронхов, кровеносных сосудов и других полых органов. Они состоят из веретенообразных мышечных волокон и не имеют поперечной исчерченности, так как миофибриллы в них расположены менее упорядоченно. В гладких мышцах отдельные клетки соединяются между собой специальными участками наружных мембран - нексусами . За счет этих контактов потенциалы действия распространяются с одного мышечного волокна на другое. Поэтому в реакцию возбуждения быстро вовлекается вся мышца.

Гладкие мышцы осуществляют движения внутренних органов, кровеносных и лимфатических сосудов. В стенках внутренних органов они, как правило, располагаются в виде двух слоев: внутреннего кольцевого и наружного продольного. В стенках артерии они формируют спиралевидные структуры.

Характерной особенностью гладких мышц является их способность к спонтанной автоматической деятельности (мышцы желудка, кишечника, желчного пузыря, мочеточников). Это свойство регулируется нервными окончаниями. Гладкие мышцы пластичны, т.е. способны сохранять приданную растяжением длину без изменения напряжения. Скелетная мышца, наоборот, обладает малой пластичностью и эту разницу легко установить в следующем опыте: если растянуть с помощью грузов и гладкую и поперечно-полосатую мышцы и снять груз, то скелетная мышца сразу же после этого укорачивается до первоначальной длины, а гладкая мышца долгое время может находиться в растянутом состоянии.

Такое свойство гладких мышц имеет большое значение для функционирования внутренних органов. Именно пластичность гладких мышц обеспечивает лишь небольшое изменение давления внутри мочевого пузыря при его наполнении.

Рис. 2. А. Волокно скелетной мышцы, клетка сердечной мышцы, гладкая мышечная клетка. Б. Саркомер скелетной мышцы. В. Строение гладкой мышцы. Г. Механограмма скелетной мышцы и мышцы сердца.

Гладким мышцам присущи те же основные свойства, что и поперечнополосатым скелетным мышцам, но и некоторые особые свойства:

  • автоматия, т.е. способность сокращаться и расслабляться без внешних раздражений, а за счет возбуждений, возникающих в них самих;
  • высокая чувствительность к химическим раздражителям;
  • выраженная пластичность;
  • сокращение в ответ на быстрое растяжение.

Сокращение и расслабление гладких мышц происходит медленно. Это способствует наступлению перестальтических и маятникообразных движений органов пищеварительного тракта, что приводит к перемещению пищевого комка. Длительное сокращение гладких мышц необходимо в сфинктерах полых органов и препятствует выходу содержимого: желчи в желчном пузыре, мочи в мочевом пузыре. Сокращение гладкомышечных волокон совершается независимо от нашего желания, под воздействием внутренних, не подчиненных сознанию причин.

Поперечно-полосатые мышцы

Поперечно-полосатые мышцы располагаются на костях скелета и сокращением приводят в движение отдельные суставы и все тело. образуют тело, или сому, поэтому их еще называют соматическими, а иннервирующую их систему — соматической нервной системой.

Благодаря деятельности скелетной мускулатуры осуществляется передвижение тела в пространстве, разнообразная работа конечностей, расширение грудной клетки при дыхании, движение головы и позвоночника, жевание, мимика лица. Насчитывается более 400 мышц. Общая масса мышц составляет 40% веса. Обычно средняя часть мышцы состоит из мышечной ткани и образует брюшко. Концы мышц — сухожилия построены из плотной соединительной ткани; они соединяются с костями при помощи надкостницы, но могут прикрепляться и к другой мышце, и к соединительному слою кожи. В мышце мышечные и сухожильные волокна объединяются в пучки при помощи рыхлой соединительной ткани. Между пучками располагаются нервы и кровеносные сосуды. пропорциональна количеству волокон, составляющих брюшко мышцы.

Рис. 3. Функции мышечной ткани

Некоторые мышцы проходят только через один сустав и при сокращении приводят его в движение — односуставные мышцы. Другие мышцы проходят через два или несколько суставов — многосуставные, они производят движение в нескольких суставах.

При концы мышцы, прикрепленные к костям, приближаются друг к другу, а размеры мышцы (длина) уменьшается. Кости, соединенные суставами, действуют как рычаги.

Изменяя положение костных рычагов, мышцы действуют на суставы. При этом каждая мышца влияет на сустав только в одном направлении. У одноосного сустава (цилиндрический, блоковидный) имеются две действующие на него мышцы или группы мышц, являющиеся антагонистами: одна мышца — сгибатель, другая — разгибатель. В то же время на каждый сустав в одном направлении действует, как правило, две мышцы и более, являющиеся синергистами (синергизм — совместное действие).

У двуосного сустава (эллипсоидный, мышелковый, седловидный) мышцы группируются соответственно двум его осям, вокруг которых совершаются движения. К шаровидному суставу, имеющему три оси движения (многоосный сустав), мышцы прилежат со всех сторон. Так, например, в плечевом суставе имеются мышцы-сгибатели и разгибатели (движения вокруг фронтальной оси), отводящие и приводящие (сагиттальная ось) и вращатели вокруг продольной оси, кнутри и кнаружи. Различают три вида работы мышц: преодолевающую, уступающую и удерживающую.

Если благодаря сокращению мышцы меняется положение части тела, то преодолевается сила сопротивления, т.е. выполняется преодолевающая работа. Работа, при которой сила мышцы уступает действию силы тяжести и удерживаемого груза, называется уступающей. В этом случае мышца функционирует, однако она не укорачивается, а удлиняется, например, когда невозможно поднять или удержать на весу тело, имеющее большую массу. При большом усилии мышц приходится опустить это тело на какую-нибудь поверхность.

Удерживающая работа выполняется благодаря сокращению мышц, тело или груз удерживается в определенном положении без перемещения в пространстве, например человек держит груз, не двигаясь. При этом мышцы сокращаются без изменения длины. Сила сокращения мышц уравновешивает массу тела и груза.

Когда мышца, сокращаясь, перемешает тело или его части в пространстве, они выполняют преодолевающую или уступающую работу, которая является динамической. Статистической является удерживающая работа, при которой не происходит движений всего тела или его части. Режим, при котором мышца может свободно укорачиваться, называется изотоническим (не происходит изменения напряжения мышцы и меняется только ее длина). Режим, при котором мышца не может укоротиться, называется изометрическим — меняется только напряжение мышечных волокон.

Рис. 4. Мышцы человека

Строение поперечно-полосатых мышц

Скелетные мышцы состоят из большого числа мышечных волокон, которые объединяются в мышечные пучки.

В одном пучке содержится 20-60 волокон. Мышечные волокна представляют собой клетки цилиндрической формы длиной 10-12 см и диаметром 10-100 мкм.

Каждое мышечное волокно имеет оболочку (сарколемму) и цитоплазму (саркоплазму). В саркоплазме находятся все компоненты животной клетки и вдоль оси мышечного волокна располагаются тонкие нити - миофибриллы, Каждая миофибрилла состоит из протофибрилл, в состав которых вкючены нити белков миозина и актина, являющихся сократительным аппаратом мышечного волокна. Миофибриллы разделены между собой перегородками, которые называются Z-мембранами, на участки - саркомеры. На обоих концах саркомеров к Z-мембране прикреплены тонкие актиновые нити, а в середине расположены толстые миозиновые нити. Нити актина своими концами частично входят между миозиновыми нитями. В световом микроскопе нити миозина выглядят в виде светлой полоски в темном диске. При электронной микроскопии скелетные мышцы выглядят исчерченными (поперечно-полосатыми).

Рис. 5. Поперечные мостики: Ак — актин; Мз — миозин; Гл — головка; Ш — шейка

На боковых сторонах миозиновой нити имеются выступы, получившие название поперечных мостиков (рис. 5), которые расположены под углом 120° по отношению к оси миозиновой нити. Актиновые филаменты выглядят в виде двойной нити, закрученной в двойную спираль. В продольных бороздках актиновой спирали находятся нити белка тропомиозина, к которым присоединен белок тропонин. В состоянии покоя молекулы белка тропомиозина расположены таким образом, чтобы предотвращать прикрепление поперечных мостиков миозина к актиновым нитям.

Рис. 6. А — организация цилиндрических волокон в скелетной мышце, прикрепленной к костям сухожилиями. Б — структурная организация филаментов в волокне скелетной мышцы, создающая картину поперечных полос.

Рис. 7. Строение актина и миозина

Во многих местах поверхностная мембрана углубляется в виде микротрубок внутрь волокна, перпендикулярно его продольной оси, образуя систему поперечных трубочек (Т-система). Параллельно миофибриллам и перпендикулярно поперечным трубочкам между миофибрилл расположена система продольных трубочек (саркоплазматический ретикулум). Концевые расширения этих трубочек - терминальные цистерны - подходят очень близко к поперечным трубочкам, образуя совместно с ними так называемые триады. В цистернах сосредоточено основное количество внутриклеточного кальция.

Механизм сокращения скелетной мышцы

Мышечная ткань состоит из клеток, называемых мышечными волокнами. Снаружи волокно окружено оболочкой — сарколеммой. Внутри сарколеммы содержится цитоплазма (саркоплазма), содержащая ядра и митохондрии. В ней содержится огромное количество сократительных элементов, называемых миофибриллами. Миофибриллы проходят от одного конца мышечного волокна до другого. Они существуют сравнительно короткий срок — около 30 суток, после чего и происходит их полная смена. В мышцах идет интенсивный синтез белка, необходимый для образования новых миофибрилл.

Мышечное волокно содержит большое количество ядер, которые располагаются непосредственно под сарколеммой, поскольку основная часть мышечного волокна занята миофибриллами. Именно наличие большого числа ядер обеспечивает синтез новых миофибрилл. Такая быстрая смена миофибрилл обеспечивает высокую надежность физиологических функций мышечной ткани.

Рис. 7. А — схема организации саркоплазматического ретикулума, поперечных трубочек и миофибрилл. Б — схема анатомической структуры поперечных трубочек и саркоплазматического ретикулума в индивидуальном волокне скелетной мышцы. В — роль саркоплазматического ретикулума в механизме сокращения скелетной мышцы

Каждая миофибрилла состоит из правильно чередующихся светлых и темных участков. Эти участки, обладая разными оптическими свойствами, создают поперечную исчерченность мышечной ткани.

В скелетной мышце сокращение вызывается поступлением к ней импульса по нерву. Передача нервного импульса с нерва на мышцу осуществляется через нервно-мышечный синапс (контакт).

Одиночный нервный импульс, или однократное раздражение, приводит к элементарному сократительному акту — одиночному сокращению. Начало сокращения не совпадает с моментом нанесения раздражения, поскольку существует скрытый, или латентный, период (интервал между нанесением раздражения и началом сокращения мышцы). В этот период происходит развитие потенциала действия, активация ферментных процессов и распад АТФ. После этого начинается сокращение. Распад АТФ в мышце приводит к превращению химической энергии в механическую. Энергетические процессы всегда сопровождаются выделением тепла и тепловая энергия обычно является промежуточной между химической и механическими энергиями. В мышце же химическая энергия превращается непосредственно в механическую. Но тепло в мышце образуется и за счет укорочения мышцы, и во время ее расслабления. Тепло, образующееся в мышцах, играет большую роль в поддержании температуры тела.

В отличие от сердечной мышцы, которая обладает свойством автоматики, т.е. она способна сокращаться под влиянием импульсов, возникающих в ней самой, и в отличие от гладкой мускулатуры, также способной к сокращению без поступления сигналов извне, скелетная мышца сокращается только при поступлении к ней сигналов из . Непосредственно сигналы к мышечным волокнам поступают по аксонам двигательных клеток, расположенным в передних рогах серого вещества спинного мозга (мотонейронам).

Рефлекторный характер деятельности мышц и координация мышечных сокращений

Скелетные мышцы в отличие от гладких способны совершать произвольные быстрые сокращения и производить этим значительную работу. Рабочим элементом мышцы является мышечное волокно. Типичное мышечное волокно представляет собой структуры с несколькими ядрами, отодвинутыми на периферию массой сократительных миофибрилл.

Мышечные волокна обладают тремя основными свойствами:

  • возбудимостью — способностью отвечать на действия раздражителя генерацией потенциала действия;
  • проводимостью — способностью проводить волну возбуждения вдоль всего волокна в обе стороны от точки раздражения;
  • сократимостью — способностью сокращаться или изменять напряжение при возбуждении.

В физиологии имеется понятие двигательной единицы, под которой подразумевается один двигательный нейрон и все мышечные волокна, которые этот нейрон иннервирует. Двигательные единицы бывают разными по объему: от 10 мышечных волокон на единицу для мышц, выполняющих точные движения, до 1000 и более волокон на двигательную единицу для мышц «силовой направленности». Характер работы скелетных мышц может быть различным: статическая работа (поддержание позы, удержание груза) и динамическая работа (перемещение тела или груза в пространстве). Мышцы участвуют также в передвижении крови и лимфы в организме, выработке тепла, актах вдоха и выдоха, являются своеобразными депо для воды и солей, защищают внутренние органы, например мышцы брюшной стенки.

Для скелетной мышцы характерны два основных режима сокращения — изометрический и изотонический.

Изометрический режим проявляется в том, что в мышце во время ее активности нарастает напряжение (генерируется сила), но из-за того, что оба конца мышцы фиксированы (например, при попытке поднять очень большой груз), — она не укорачивается.

Изотонический режим проявляется в том, что мышца первоначально развивает напряжение (силу), способное поднять данный груз, а потом мышца укорачивается — меняет свою длину, сохраняя напряжение, равное весу удерживаемого груза. Чисто изометрического или изотонического сокращения практически наблюдать нельзя, но существуют приемы так называемой изометрической гимнастики, когда спортсмен напрягает мышцы без изменения длины. Эти упражнения в большей мере развивают силу мышц, чем упражнения с изотоническими элементами.

Сократительный аппарат скелетной мышцы представлен миофибриллами. Каждая миофибрилла диаметром 1 мкм состоит из нескольких тысяч протофибрилл — тонких, удлиненных полимеризированных молекул белков миозина и актина. Миозиновые нити в два раза тоньше актиновых, и в состоянии покоя мышечного волокна актиновые нити свободными кольцами входят между миозиновыми нитями.

В передаче возбуждения большую роль играют ионы кальция, которые входят в межфибриллярное пространство и запускают механизм сокращения: взаимное втягивание относительно друг друга актиновых и миозиновых нитей. Втягивание нитей происходит при обязательном участии АТФ. В активных центрах, расположенных на одном из концов миозиновых нитей, АТФ расщепляется. Энергия, выделяемая при расщеплении АТФ, преобразуется в движение. В скелетных мышцах запас АТФ невелик — всего на 10 одиночных сокращений. Поэтому необходим постоянный ре- синтез АТФ, который идет тремя путями: первый — за счет запасов креатинфосфата, которые ограничены; второй — гликолитический путь при анаэробном расщеплении глюкозы, когда на одну молекулу глюкозы образуется две молекулы АТФ, но одновременно образуется молочная кислота, которая тормозит активность гликолитических ферментов, и наконец третий — аэробное окисление глюкозы и жирных кислот в цикле Кребса, совершающееся в митохондриях и образующее 38 молекул АТФ на 1 молекулу глюкозы. Последний процесс наиболее экономичный, но очень медленный. Постоянная тренировка активизирует третий путь окисления, в результате чего повышается выносливость мышц к длительным нагрузкам.



mob_info