Закономерности адаптации. Биологические принципы спортивной тренировки

· Адаптационные сдвиги в организме зависят от вида выполняемой мышечной работы и наблюдаются как в харктере, так и в проявлениях кумулятивного эффекта.

· Наиболее выраженные эффекты физической активности и адаптационные изменения проявляются в органах, системах и физиологических механизмах, наиболее нагружаемых при выполнении физической активности (для которых физическая активность достигает порогового или надпорогового уровня) («Тренируется то, что тренируем»).

Специфичность тренировочных эффектов проявляетс я

· В отношении двигательного навыка (спортивной техники) - наибольший эффект тренировки проявляется в отношении того двигательного навыка (спортивной техники) на который и нацелена тренировка – принцип специализации . В данном случае тренировка направлена на развитие и закреплении техники определённого движения и повышение его результативности, что требует развитие межмышечной координации , которая специфична для конкретного виды движений и, как правило, не переносится с одного движения на другое.

· В отношении ведущей физической способности – тренировочные упражнения и режимы способствуют наиболее эффективному развитию той двигательной способности дляразвития которой они подбирались и применялись. Примеры.

o Скоростные нагрузки увеличивают прирост анаэробных возможностей за счёт усиления креатинфосфатного и гликолитического ресинтеза АТФ.

o Скоростно-силовые нагрузки вызывают повышение содержания креатинфосфата и гликогена в мышцах, развитие саркоплазматического ретикулюма, мышечную гипертрофию миофибриллярного типа, смещение спектра мышечных волокон в сторону быстрых волокон, повышение резистентсности к молочной кислоте.

o Длительные нагрузки аэробного типа увеличивают возможности аэробного энергообеспечения: мышечную гипертрофию саркоплазматического типа; увеличение количества и размеров мыечных митохондрий, содержания миоглобина, концентрации гликогена и запасов внутримышечного миоглобина, смещение спектра мышечных волокон в сторону красных волокон, повышение МПК.

o Силовые нагрузки увеличивают мышечную массу за счёт синтеза сократительных белков.

· В отношении состава активных мышечных групп. Каждый вид двигательной активности (физических упражнений) активирует и тренирует определённые мышечные группы. Наиболее высокие функциональные показатели и наибольшая экономичность проявляются при выполнении упражнений с использованием основных тренируемых мышечных групп. Например, у квалифицированных спортсменов наибольшее МПК регистрируется при выполнении специфического (соревновательного) упражнения.

· В отношении условий тренировки – адаптационные изменения в организме, возникающие в результате тренировки в определённых условиях внешней среды, обеспечивают приспособление организма к данным конкретным условиям внешней среды.

Специфический и неспецифической компоненты адаптации к физическим нагрузкам

· Неспецифические изменения наблюдаются при выполнении любой мышечной работы: повышение физической работоспособности, совершенствование механизмов регуляции, укрепление здоровья.

· Соотношение специфического и неспецифического компонентов зависит от характера физических нагрузок

o Адаптация к анаэробным нагрузкам более специфична, чем к аэробным, так как при первых адаптация, прежде всего, связана с изменениеми в самих активных мышцах, а вторая – и с внемышечными факторами (состояние кардиореспираторной системы, кислородной ёмкостьб крови и др.).

o Узкоспециализированные физические упражнения оказывают более специфический эффект, чем общеразвивающие упражнения, оказывающие общий тренировочный эффект. Последний тип упражнений предпочтителен для применения для оздоровительных целей или на начальных этапах спортивной тренировки.

Регулярные систематические аэробные нагрузки в тренирующей зоне (на уровне 50-80% МПК) вызывают адаптационные изменения, улучшающие доставку кислорода в мышцы и другие органы и ткани, его транспорт в ткани и утилизацию. Различают мышечную кардиореспираторную адаптацию к аэробной нагрузке. Такая адаптация, включающая как структурные, так и функциональные изменения, приводит к улучшению доставки кислорода и питательных веществ к сокращающимся мышцам, удалению продуктов метаболизма, улучшает регуляцию метаболизма в отдельных мышечных волокнах.

Адаптация кислородутилизирующих систем (мышечная адаптация )

· Избирательная саркоплазматическая гипертрофия медленно сокращающихся мышечных волокон типа I с повышением их окислительной способности.

· Увеличение плотности капилляров в мышечных волокнах с увеличением количества капилляров, приходящихся на одно волокно и возможности повышения скорости и объёма доставки кислорода в мышцы, питательных веществ и удаления конечных продуктов метаболизма.

· Увеличение содержания миоглобина в мышцах

Повышение способности митохондрий к окислительному ресинтезу АТФ

· увеличение размеров и количества митохондрий

· повышение способности к окислению липидов и углеводов

· увеличение использования липидов как энергетического топлива

· увеличение содержания гликогена и триглицеридов

· повышение способности к проявлению выносливости

Содержание миоглобина в мышцах. Результаты исследований, проведенных на животных, свидетельствуют о том, что содержание миоглобина в мышцах под влиянием тренировки может увеличиваться на 80%. Следовательно, потенциальная возможность неактивного мышечного волокна к переносу кислорода увеличивается. Возрастание количества миоглобина для повышения окислительной способности мышц в покое невелико. Основной эффект увеличения содержания миоглобина проявляется во время мышечной работы и связан с облегчением диффузии кислорода в мышцы из крови.

Запасы внутримышечных энергетических источников. В ряде работ отмечается, что у хорошо тренированных лиц в состоянии покоя обнаруживается более высокое содержание гликогена (в 2,5 раза по сравнению с нетренированным состоянием). Увеличение запасов гликогена может быть обусловлено, в частности, повышением чувствительности мышечных клеток к инсулину, что происходит под влиянием тренировки. Это способствуетболее быстрому поступлению глюкозы в мышечные волокна. У выносливых спортсменов переход глюкозы в мышечные клетки происходит приблизительно на 60% больше, чем у людей, ведущих малоподвижный образ жизни. Только у тренированных лиц были обнаружены значительные запасы глюкозы и гликогена в скелетных мышцах.

Инсулин также способствует дозозависимому возрастанию притока крови к инсулинчувствительной ткани. Поскольку тренированным мышцам присуща улучшенная капилляризация, этот эффект инсулина может повысить доставку кислорода к ним. В тренированных мышцах развита повышенная способность к запасанию глюкозы в виде гликогена. Концентрация мышечного гликогена будет зависеть от времени, прошедшего после тренировочной нагрузки, и количества после дующего потребления с пищей углеводов. Более высокое содержание мышечного гликогена у тренированных лиц может отражать феномен гликогеновой суперкомпенсации.

Плотность митохондрий в мышцах и окислительная активность ферментов. В

тренированных мышцах митохондрии характеризуются значительно более высокой способностью к окислительному восстановлению АТФ. Окислительная способность скелетных мышц повышена за счет заметного увеличения площади поверхности митохондриальной мембраны, а также количества митохондрий, приходящихся на единицу площади мышечной ткани. В среднем размеры митохондрий скелетных мышц у выносливых спортсменов на 14-40% больше по сравнению с нетренированными лицами, ведущими малоподвижный образ жизни. Эта специфическая особенность проявляется только в волокнах, задействованных в выполнении тренировочного упражнения.

Принцип сверхотягощения (или принцип прогрессивной перегрузки мышц) заключается в том, что для постоянного роста мышцы нуждаются в постоянно увеличивающейся нагрузке. Если вы будете все время тренироваться с одним и тем же весом и одним и тем же количеством подходов и повторений, мышцы, в конце концов, адаптируются (приспособятся) к этой нагрузке и перестанут на нее реагировать. Поэтому периодически необходимо увеличивать тренировочную нагрузку. Чем больше нагрузка — тем больше рост мышц. Однако, этот принцип справедлив до определенной степени. Если нагрузка является чрезмерной, может наблюдаться так называемый «срыв адаптации», когда наблюдается обратный эффект – увеличение нагрузки приводит к уменьшению скорости роста мышц или приводит к перегрузке организма и уменьшению массы мышц. Другими словами, нагрузка должна быть достаточной, чтобы стимулировать мышцы к росту. Если наблюдается рост мышц при меньшей нагрузке, совершенно нет необходимости ее увеличивать.

Принцип специфичности состоит в том, что в организме адаптационные изменения происходят в большей степени в тех системах, которые в максимальной степени задействуются при каком-либо специфическом виде физической активности. Максимально обобщая, действие принципа специфичности можно выразить следующим образом: если вы хотите быстро бегать – вы должны бегать; если вы хотите быстро плавать — вы должны плавать; если вы хотите жать лежа 200 кг, вам совершенно незачем бегать по 40 километров на тренировке — вы должны выполнять силовую тренировку в жиме лежа. Другими словами, чтобы получить определенный результат, вы должны выполнять точно определенную тренировочную работу. Вы не можете применять совершенно разные тренировочные нагрузки и получить один и тот же результат во всех случаях.

В более узком смысле, применительно к бодибилдингу, принцип специфичности может означать следующее: если вы, например, хотите развивать верхнюю часть грудных мышц, вы должны подобрать такие упражнения, которые в большей степени задействуют верхнюю часть грудных мышц.

А если конкретизировать принцип специфичности применительно к бодибилдингу в максимально возможной степени, то его можно свести к следующему: если вы хотите увеличивать мышечную массу в максимально возможной степени, вы должны применять такую тренировочную нагрузку, которая в максимальной степени вызывает разрушение структурных и сократительных белков с целью вызвать последующую максимальную суперкомпенсацию.

Из принципа обратимости действия следует, что вызванные тренировкой адаптационные изменения в организме являются проходящими. После того, как вы перестанете нагружать мышцы, их объем начнет постепенно уменьшаться пока, через определенный промежуток времени, не возвратится к исходному уровню. Как мы уже знаем, после напряженной тренировки, приводящей к существенному разрушению белковых структур, они восстанавливаются не до исходного уровня, но с превышением исходного уровня (явление суперкомпенсации или сверхвосстановления). Однако, после завершения фазы сверхвосстановления, эти показатели приходят к норме. Для того чтобы каждую тренировку вы не начинали с уровня предыдущей тренировки, повторные нагрузки должны задаваться в фазе сверхвосстановления. Взаимодействие различных тренировочных эффектов иллюстрирует следующий рисунок:

Суммирование тренировочных эффектов при повторном выполнении нагрузок через различные интервалы отдыха:

  • А — в фазе упроченного состояния — нейтральное взаимодействие;
  • B — в фазе сверхвосстановления — положительное взаимодействие;
  • C — в фазе восстановления — отрицательное взаимодействие.

Как видите, если вы будете делать слишком большие интервалы отдыха между повторными тренировками мышечных групп, то есть, проводить последующие тренировки в фазе упроченного состояния, то вы не сможете суммировать положительные эффекты явления суперкомпенсации. Изменения в мышцах будут возвращаться к исходному уровню, и мышечные боли от одинаковой нагрузки у вас будут возникать все время, поскольку каждая тренировка будет восприниматься организмом как новая, однако в этом случае мышечная масса увеличиваться не будет.

Если вы будете делать слишком короткие интервалы между повторными тренировками мышечной группы, то будете вызывать дистрофические изменения в мышце, поскольку не будете давать возможность мышце восстановиться. Как вы уже знаете, тренировочная нагрузка приводит к разрушению белков и структурных элементов мышцы. Как же можно надеяться увеличить мышечную массу постоянно разрушая ее? Чтобы увеличивать мышечную массу, вы должны давать мышце возможность восстановиться после нагрузки, а затем, когда наступит фаза сверхвосстановления, произвести повторную тренировку.

Повторная нагрузка должна задаваться только в фазе сверхвосстановления. И в этом месте может возникнуть следующий вопрос: «А когда же наступает фаза сверхвосстановления?». Давайте попробуем на него ответить. Мы знаем, что повторная тренировка с одинаковой нагрузкой, проведенная через 14 дней, вызывает мышечные боли. Это сигнализирует о том, что мышца возвратилась к первоначальному состоянию и фаза сверхвосстановления завершена. Полное восстановление нормальной ультраструктуры мышц происходит примерно в течение 10 дней. Это означает, что фаза восстановления завершается примерно к 10 дню. На основании этих данных можно попробовать построить график восстановления мышцы после нагрузки максимальной интенсивности. Он будет выглядеть примерно так:


Длительность фаз восстановления и сверхвосстановления ультраструктуры мышц.

  • А – фаза восстановления,
  • В – фаза сверхвосстановления.

Здесь необходимо обратить ваше внимание на следующий момент – приведенный график отражает скорость восстановления структурных и сократительных белков после нагрузки максимальной интенсивности у спортсмена, не использующего мощные восстановительные препараты.

Использование нагрузки меньшей интенсивности, например, 50%, 60%,70% или 80% от максимума, приведет к соответствующему уменьшению периода восстановления белковых структур, поскольку белковые структуры при нагрузке меньшей интенсивности будут разрушаться в меньшей степени.

Также следует отметить, что использование анаболических стероидов, в зависимости от дозировки, в различной степени ускоряет анаболические процессы в организме и, в частности, сокращает период восстановления разрушенных белковых структур.

  • Начинающие, поскольку они не имеют достаточной степени тренированности, чтобы вызвать сильные разрушения мышечных структур.
  • Люди со слабой нервной системой, поскольку они не могут генерировать нервные импульсы высокой частоты достаточно длительно, чтобы выполнить подход с необходимой интенсивностью и продолжительностью, вызывающей существенные разрушения мышечных структур.

В принципе положительного взаимодействия состоит в суммировании положительных адаптационных изменений в организме после тренировочных нагрузок.

Положительное взаимодействие может быть проявлено как на уровне положительного сочетания тренировочных эффектов после нагрузок разной направленности, так и на уровне суммирования эффектов суперкомпенсации после серии тренировок, проведенных с достаточными интервалами отдыха.

Например, на уровне сочетания тренировочных эффектов положительное взаимодействие адаптационных изменений в организме проявляется при проведении тренировок, направленных на увеличение силовых показателей и при проведении тренировок, направленных на увеличение мышечной массы. Тренировки силовой направленности и тренировки для увеличения мышечной массы вызывают в организме адаптационные изменения очень близкие по типу, поэтому при сочетании таких тренировочных нагрузок будет наблюдаться эффект положительного взаимодействия.

С другой стороны, аэробные тренировочные нагрузки, направленные на развитие выносливости и тренировки силовой направленности задействуют в организме различные механизмы энергообеспечения, а также по-разному вовлекают в работу мышечную, сердечно-сосудистую и нервную системы, поэтому вызывают очень разные адаптационные изменения в организме. Это различие приводит к отрицательному или нейтральному взаимодействию, когда специфика адаптационных изменений, вызываемых нагрузкой одной направленности, никак не связана или даже находится в конфликте с адаптационными изменениями в организме, вызываемыми нагрузкой другой направленности.

На уровне суммирования эффектов суперкомпенсации после тренировочной нагрузки, принцип положительного взаимодействия проявляется двояко. С одной стороны, возможно накопление эффектов суперкомпенсации, выраженное в увеличении какой-либо отдельной мышечной группы – локальная суперкомпенсация. С другой стороны, возможно накопление эффектов суперкомпенсации при восстановлении организма в целом – общая суперкомпенсация. Причем локальная суперкомпенсация напрямую зависит от общей суперкомпенсации. Эту зависимость следует рассмотреть более детально.

Существует определенный энергопотенциал всего организма и скорость восстановительных процессов, происходящих в отдельных мышцах, зависит от того, насколько восстановлен общий энергопотенциал:

— если последующее тренировочное занятие проводится в фазе сверхвосстановления общего энергопотенциала организма, то имеет место положительное взаимодействие;

— если последующая нагрузка проводится в фазе восстановления общей энергетики, то взаимодействие считается отрицательным;

— если последующая нагрузка проводится в фазе упроченного состояния, то имеет место нейтральное взаимодействие.

Это очень важный принцип и его нужно хорошо усвоить. В большинстве случаев спортсмены осознают, что для проведения тяжелой тренировки необходимо затратить большой объем энергии, и эта энергия будет использована для разрушения мышечных структур. Но те же спортсмены зачастую не понимают того факта, что для протекания нормального процесса восстановления разрушенных мышечных структур тоже необходим большой объем энергии. Чем больше энергии имеет ваш организм после тренировки и между тренировками, тем быстрее протекают восстановительные процессы в мышцах, и тем большей будет величина сверхвосстановления разрушенных структур, то есть, мышечная масса ваших мышц увеличится в большей степени.

Общаясь с людьми, занимающимися бодибилдингом, я обнаружил, что у многих из них существует удивительный критерий оценки эффективности проведенной тренировки. Они считают, что тренировка прошла успешно, если после тренировки чувствуется сильное общее утомление. То есть, чем больше ты устал от тренировки, тем лучше. Это огромное заблуждение! В этом случае я постоянно повторял таким людям, что не понимаю, для чего они тренируются: для того, чтобы больше уставать или для того, чтобы увеличивать мышечную массу.

Эти вещи не следует путать. Восстановление скелетных мышц может нормально протекать только в том случае, если ваш организм не переутомлен и имеет достаточно свободной энергии. Поэтому, нагрузка в каждом отдельном тренировочном занятии должна планироваться с учетом общего самочувствия. Вы должны дать мышцам такую нагрузку, чтобы она приводила к их росту и, в то же время, нагрузка на каждой тренировке не должна вызывать сильного общего утомления.

Принцип последовательной адаптации основывается на том факте, что восстановление разных источников энергии происходит не одновременно (гетерохронно). В период восстановления после окончания действия физической нагрузки, в мышцах наиболее быстро достигается суперкомпенсация содержания креатинфосфата, затем гликогена и, наконец, липидов и белков, образующих субклеточные структуры. Еще больше времени необходимо для восстановления связок, сухожилий, хрящевой и костной ткани.

Кроме этого, восстановление одного и того же источника энергии (например, гликогена) в разных органах также проходит не одновременно. В первую очередь гликоген восстанавливается в наиболее важных жизненных органах: в клетках мозга и сердца, а затем уже в мышцах и печени. Для восстановления гликогена в мышцах используются внутренние субстратные фонды, в частности молочная кислота и глюкоза, образовавшаяся из веществ не углеводной природы, а гликоген печени восстанавливается из продуктов питания.

Аналогичная последовательность восстановления существует также в синтезе белков в структурных организациях клеток различных тканей организма. Объясняется это тем, что белки разных тканей имеют разную интенсивность обновления, то есть период полужизни. Так, в сердечной мышце белки мембран обновляются наполовину за 4 суток, белки митохондрий — за 5 суток, а миофибриллярные белки — более 12 суток. Следовательно, от одной тренировки к другой сначала увеличивается тренированность энергетических структур в мышечной ткани, а затем — сократительных структур.

Принцип цикличности утверждает, что адаптационные изменения в организме при тренировке носят фазовый характер, и эти колебания в скорости развития адаптации co стороны ведущих функций имеют различную амплитуду и длину волны. Чтобы создать необходимый стимул для развития адаптации, тренировочные эффекты нескольких занятий должны быть суммированы по определенным правилам и представлять некоторый завершенный цикл.

Как мы знаем, для того, чтобы мышцы росли, они должны получать достаточную нагрузку. Эта нагрузка должна постоянно возрастать, иначе мышцы адаптируются (приспособятся) к ней и не будут увеличиваться. Но это не означает, что каждая тренировка должна быть тяжелее, чем предыдущая. Мышцы не могут адаптироваться к предлагаемой нагрузке так быстро, чтобы на следующей тренировке они уже не реагировали на нее. Мышца перестает реагировать только после 4-8 последовательных тренировочных занятий, проведенных с одинаковой нагрузкой. Поэтому нет необходимости увеличивать нагрузку на отдельную мышцу раньше, чем вы проведете на нее как минимум 4 тренировки. Это минимальный срок. Но, если вы, после 8 тренировок на мышечную группу, не увеличите нагрузку, то вполне вероятно, что эти мышцы уже не будут реагировать в достаточной степени для продолжения дальнейшего роста.

Использование материалов сайта сайт в интернете разрешается только при наличии активной гиперссылки на источник — .
Использование материалов сайта в печатных изданиях возможно только после получения письменного разрешения автора сайта.

Принцип специфичности постулирует, что «наиболее выраженные адаптационные изменения под влиянием тренировки происходят в органах и функциональных системах, в наибольшей степени нагружаемых при выполнении физической нагрузки»(4). Как говорится, «тренируется то, что тренируешь». Например, кратковременные тренировки с околопредельными и предельными нагрузками вызовут те адаптационные изменения, которые соответствуют именно этому характеру нагрузки, и будут отличаться от тех, что происходят под влиянием длительной непрерывной тренировки с умеренными нагрузками. Первая из них вызовет увеличение поперечного сечения мышцы за счет развития в основном «быстрых» мышечных волокон, совершенствование креатинфосфокиназной, миокиназной систем энергообразования и анаэробного гликолиза. Вторая же приведет к развитию «медленных» мышечных волокон, в меньшей степени способных к гипертрофии, а также совершенствованию аэробных механизмов энергоснабжения и увеличению капилляризации.

Таким образом, приступая к занятиям с клиентом, необходимо достаточно точно определиться с характером нагрузки, использование которой должно решить те или иные задачи, поставленные им. В связи с этим возникает проблема, если клиент хочет максимально развить несколько различных качеств. Взаимодействие тренировочных эффектов от различающихся по своему характеру нагрузок может носить отрицательный характер. Например, неправильное комбинирование в тренировочном процессе нагрузок, направленных на развитие силы и выносливости, могут привести к значительному снижению тренировочного эффекта от каждой из них. Ускорение синтеза митохондрий и повышение уровня содержания ферментов, обеспечивающих аэробный механизм энергоснабжения при работе на выносливость, обеспечивается выбросом в кровь т. н. стресс-гормонов, основными из которых являются глюкокортикоиды. Однако глюкокортикоиды, в т. ч. мобилизуя белковые ресурсы организма, «конкурируют» с анаболическими гормонами, призванными ускорить синтез сократительных белков для увеличения силовых качеств. В свою очередь, кратковременные мощные тренировки, направленные на развитие силы и использующие анаэробные механизмы ресинтеза АТФ, «закисляют» внутреннюю среду организма, что препятствует росту митохондрий («энергостанций», обеспечивающих аэробный путь энергообразования). В принципе, существует возможность одновременно развивать различные качества, применяя отличающиеся друг от друга тренировочные воздействия, однако комбинировать их, сообразуясь с определенными правилами и выбирая приоритетные цели и задачи. Поэтому вам как тренеру необходимо в доступной форме ознакомить своего подопечного с этим явлением и совместно определиться с приоритетами.

Реакция расщепления уникальной молекулы аденозинтрифосфорной кислоты (АТФ) сопровождается освобождением энергии, преобразуемой в процессе мышечного сокращения в мышечную работу. Эта реакция является единственным и непосредственным источником энергии для всей жизнедеятельности организма, в том числе для сокращения и расслабления мышц. Запасы АТФ в мышечных клетках относительно постоянны, но настолько незначительны, что их хватит лишь на 3-4 одиночных мышечных сокращений максимальной интенсивности, если отключить все механизмы ресинтеза (воспроизводства) этого макроэргического соединения. В процессе жизнедеятельности количество молекул АТФ в клетках восстанавливается (ресинтезируется) из продуктов их распада с той же скоростью, с какой они расщепляются. За сутки организм производит до 60 кг этих удивительных молекул.

Основным, в повседневной жизнедеятельности человеческого организма, является аэробный процесс энергообразования. Он обеспечивает организм энергией большую часть времени суток и всей его жизни. Ресинтезируемые при этом молекулы АТФ и их энергия обеспечивают работу сердца, дыхание, мыслительные процессы, синтез белков, жиров, углеводов в организме, рост костей, мышц и т. д.

Мощность аэробного энергообразования и другие его параметры (метаболическая подвижность и емкость) минимальны у нетренированного человека, но значительно возрастают под воздействием регулярных тренировок. Чем лучше развит (тренирован) аэробный процесс, тем больше он дает энергии и в паузах отдыха (между упражнениями, сериями упражнений, между тренировками и т.д.). Тем быстрее организм восстанавливается в этих паузах, так как для восстановления истраченных энергоресурсов, для обеспечения пластических процессов (воссоздание белков, углеводов, жиров) требуется энергия.

Метаболическая мощность аэробного энергообразования колеблется от 0,8 до 1,8 кДж/кг/мин., в зависимости от специфики функциональной подготовки спортсмена. Этот процесс является ведущим в энергообеспечении стайеров-бегунов, марафонцев, лыжников и т. д.

Метаболическая подвижность аэробного процесса (время, в течение которого достигается максимальная метаболическая мощность энергообразования) у нетренированного человека очень низкая и достигает 3 минут, и более. Целенаправленные тренировки значительно улучшают этот компонент, и у высококвалифицированного спортсмена максимальная метаболическая мощность аэробного процесса энергообразования достигается уже через 1,5 минуты после старта.

Метаболическая емкость этого процесса (общее количество образующейся энергии) практически безгранична для продолжительной работы умеренной мощности.

Аэробное энергообразование в клетках осуществляют клеточные органеллы – митохондрии. Число их и размеры несколько различаются у людей, что обеспечивает и различия в возможностях энергообразования. Иногда эти различия настолько значительны, что приходится говорить уже о митохондриальной дисфункции (МД), как патологическом состоянии.

Митохондриальная дисфункция является фактором риска таких тяжелых заболеваний как гипертрофическая кардиомиопатия, рассеянный склероз, боковой амиотрофический склероз, дисплазия соединительной ткани и др.

У 20 % женщин наблюдается митохондриальная дисфункция, которую наследуют их дети. Необходимо отметить, что митохондриальную систему, а

значит и аэробную систему энергообразования, люди наследуют только от матерей. Это необходимо учитывать при наборе подростков в спортивные секции, особенно в тех видах спорта, где аэробное энергообразование является главным фактором успеха. Это стайерские дистанции в легкой атлетике, плавании, конькобежном спорте и т. д.

Но, следует иметь в виду, что под воздействием систематических многолетних тренировок в клетках увеличиваются количество митохондрий и их размеры. То есть митохондриальная дисфункция может устраняться таким естественным способом. Кроме того, существую возможности коррекции МД и фармакологическими средствами.

Анаэробная работа субмаксимальной мощности может продолжаться (у спринтеров-легкоатлетов) на предельной интенсивности от 20-40 секунд до 2 минут. Столь значительно, под влиянием тренировок, увеличение метаболической емкости гликолиза. Достигаемая в процессе многолетних тренировок спринтеров его (гликолиза) предельная мощность энергообразования составляет 2,5 кДж/кг/мин. По мнению В.С. Финогенова (1981 г.) такая мощность энергообразования поддерживается не более 40 – 60 секунд, а затем начинается постепенное некоторое её снижение.

Метаболическая подвижность гликолиза, у начинающего спортсмена, составляет 1,5 минуты, а у высококвалифицированного этот процесс набирает максимальную мощность всего за 20 – 30 секунд!

Анаэробную работу максимальной мощности, у нетренированного человека, креатинфосфокиназный процесс обеспечивает энергией не более 2–3 секунд. У тренированного спринтера-профессионала метаболическая емкость этого процесса достигает 8–10 секунд. И максимальная метаболическая мощность данного вида анаэробного энергообразования у тренированного спортсмена достигает 3,7 кДж/кг/мин.

Метаболическая подвижность креатинфосфокиназного процесса энергообразования, у нетренированного человека, составляет 2-3 секунды. Но годы упорных тренировок приводят к удивительным сдвигам и у спринтера-профессионала этот процесс может набирать максимальную мощность за десятые доли секунды.

Сопоставление приведенных выше цифровых параметров метаболических процессов однозначно показывает, что скоростно-силовая работа (субмаксимальной и максимальной мощности) не может быть обеспечена энергией за счет аэробного процесса. Энергетическое обеспечение работы максимальной и субмаксимальной мощности осуществляется, преимущественно, анаэробными процессами, соответственно, креатинфосфокиназной реакцией и гликолизом.

Их метаболическая подвижность, мощность и емкость зависят от величины запасов энергосубстратов (креатинфосфата и гликогена) в клетках. Но существует еще целая группа биохимических и физиологических факторов предопределяющих возможность оптимизации параметров процессов энергообразования.

В нетренированных мышцах содержание креатинфосфата не превышает 0,5% от общего веса мышцы. В тренированных мышцах спортсмена запасы креатинфосфата возрастают до 1,5%, и поэтому эффективное креатинфосфокиназное энергообразование в них может продолжаться 8 – 10 сек. (у нетренированного человека 2-3сек.). К 30-й секунде работы мощность этого процесса снижается вдвое и далее понижается практически до ноля, за 2-3 мин.

Снижение метаболической мощности креатинфосфокиназной реакции после 8 – 10 секунд работы компенсируется энергией набирающего мощность другого анаэробного процесса энергообразования – гликолиза. Но он, в этой ситуации, не является единственным источником энергии, так как ещё продолжается угасающая креатинфосфокиназная реакция.

При напряженной работе включение гликолитического процесса и увеличение мощности аэробной энергопродукции происходит практически одновременно, сразу же после снятия креатинфосфатного блока. Первые 10-15 сек. всякой работы аэробный процесс ограничивается реализацией имеющихся в организме кислородных запасов, сконцентрированных в миоглобине. Дальнейшая интенсификация процесса связана с активацией системы транспорта кислорода. То есть скоростные возможности спортсмена при работе субмаксимальной мощности предопределяются так же подвижностью и мощностью аэробного процесса энергообразования.

– Биологические принципы спортивной тренировки

Планируя тренировки, тренер должен руководствоваться главными биологическими принципами, вытекающими из знания основных закономерностей адаптации организма к физическим нагрузкам. Этими принципами являются:

принцип специфичности действия нагрузок на организм,

принцип сверхотягощения,

принцип последовательности адаптационных процессов,

принцип обратимости действия нагрузок,

принцип взаимодействия эффектов нагрузок,

принцип цикличности.

Специфичность действия физических нагрузок – (и избирательность их тренирующего воздействия на организм) проявляется выраженными адаптационными процессами и специфическими изменениями в наиболее нагружаемых органах и системах.

Определённый набор физических упражнений и пауз отдыха между ними вызывает совершенствование алактатного анаэробного механизма энергообразования. Для развития и совершенствования другого анаэробного механизма – гликолитического, требуются специфические упражнения иной интенсивности и продолжительности, и необходимы иные паузы отдыха между ними.

Резко отличается, от двух предыдущих, специфический набор нагрузок и пауз отдыха, вызывающих увеличение метаболической подвижности, мощности, ёмкости и эффективности аэробного процесса энергообразования.

Сверхотягощение (критическая нагрузка, физический стрессор) физических нагрузок – обязательное условие тренировочного процесса, так как величина нагрузки должна превышать некую пороговую её величину, с которой начинаются адаптационные сдвиги в организме и совершенствование тренируемого биохимического процесса.

Необходимо отметить, что при слишком длительном использовании упражнения оно постепенно утрачивает характер сверхотягощения, стрессорный характер, и потому перестаёт возбуждать адаптационные перестройки и развитие тренируемой функции. Следовательно, чтобы стимулировать дальнейшие адаптационные изменения необходимо прогрессирующее увеличение интенсивности и объёма физических нагрузок, величина которых не должна быть ниже значений порога анаэробного обмена (ПАНО).

Вместе с тем, нельзя забывать об индивидуальных пределах адптации, пренебрежение которыми превращает нагрузку из адекватной в нагрузку чрезмерную (чрезмерный физический стрессор). При этом возникает срыв адаптации (состояние дистресса) и запускается механизм формирования патологического состояния.

Последовательность адаптации к нагрузкам – проявляется разновремённостью биохимических процессов и, связанных с ними, изменений в организме. Срочный тренировочный эффект проявляется, прежде всего, в анаэробной (алактатной) системе энергообразования, затем

изменениями гликолиза. В последнюю очередь, отмечаются изменения параметров процесса аэробного энергообразования (окислительного фосфорилирования).

Под воздействием физических нагрузок сначала возрастает метаболическая мощность процессов энергообразования, затем их метаболическая ёмкость и, в последнюю очередь, увеличивается эффективность.

Разновремённость процесса биохимического восстановления организма после прекращения нагрузки, проявляется в том, что суперкомпенсация для различных энергосубстратов наступает в определённой временой последовательности. В первую очередь происходит восстановление и суперкомпенсация запасов креатинфосфата в клетке, затем восстанавливаются гликоген, липиды и, в последнюю очередь, белки.

Обратимость действия физических нагрузок – демонстрируется постепенным исчезновением всех положительных сдвигов, вызванных систематическими тренировками, если их прекратить. Так, фаза суперкомпенсации энергосубстратов, возникающая в определенный момент восстановления организма после нагрузки, через определённое время сменяется возвращением количества энергосубстратов к исходному (дорабочему) уровню. Уменьшение напряженности тренировок или их прекращение на какое-то время ведёт к снижению силы, скорости движений, ухудшаются выносливость и работоспособность.

Следовательно, тренировки необходимо повторять, а, для прогрессирующего увеличения запасов энергосубстратов, каждую последующую тренировку (или некоторые из них) необходимо начинать в момент высшего уровня фазы суперкомпенсации. Такая тактика и ведет к прогрессирующему увеличению количества энергосубстратов, ферментов в клетках мышц, печени. Поэтому увеличивается мышечная масса и т.д.

Принцип взаимодействия эффектов (срочных и отставленных) тренировочных нагрузок – заключается не только в суммации этих эффектов. Их кумулятивный эффект может быть больше этой суммы, так как адаптационный процесс, вызванный одним упражнением, может значительно увеличить эффективность последующих.

То есть, имеет место положительное взаимодействие эффектов, но возможно получение отрицательного или нейтрального взаимодействия. На эффективность тренировочного процесса могут оказывать положительное или отрицательное воздействие различные факторы.

К таким факторам, прежде всего, следует отнести восстановительные мероприятия, среди которых необходимо выделить влияние сна на восстановительные процессы.

В процессе рабочего дня в организме спортсмена накапливаются разннобразные токсины. Это избыточные свободные радикалы, альдегиды и другие метаболиты, устранение которых из организма особенно интенсивно происходит в процессе сна. Такая детоксикация клеток происходит с активнейшим участием соматотропина – гормона роста. Когда человек засыпает, в его организме резко активируется производство этого гормона. Пик его продуцирования достигается к 23 часам и сохраняется до 1 часа ночи. Основная функция этого гормона заключается в очищении клеток нервной, мышечной и других систем от накопившихся токсинов.

Кроме того, соматотропин активирует синтез клеточных сократительных белков, ферментов, антител и т.д. То есть, он, самым непосредственным образом, обеспечивает восстановление (и сверхвосстановление) организма и его готовность к эффективному выполнению новых тренировочных нагрузок.

Следовательно, продолжительность сна, оптимальное время отхода ко сну и время пробуждения, рациональное питание, питьевой режим, психоэмоциональное состояние, адаптогены, климатические факторы, витаминизация, климат и многие другие факторы обеспечивают взаимодействие тренировочных эффектов.

Цикличность тренировочного процесса – связана с фазовым характером адаптации к тренировкам различной направленности и взаимодействием эффектов нагрузок. Поэтому тренировочные занятия должны проводиться циклами четко спланированных и многократно повторяемых воздействий на ведущие функциональные системы.

В подобных циклах осуществляется конкретная задача подготовки спортсмена. Такие циклы последовательно сменяют друг друга на различных этапах процесса подготовки к соревнованиям.

Методика умственной хрономеирии - класс психологических методов, предназначенных для установления времени протекания психических процессов на основе регистрации времени, затрачиваемого испытуемым на ответ напр., времени двигательной реакции при решении различных познавательных задач. Время осуществления простых психических операций определяется методом вычитания: из времени реакции в задаче, где искомая операция задействована, вычитается время реакции в аналогичной задаче, где она не нужна. .

Квиллиан, эксперимент: испытуемым предлагалось оценить истинность утверждений типа «канарейки могут петь», «канарейки имеют перья»,«канарейки имеют кожу». Измерялось время реакции. Результат: время, затраченное на оценку истинности первого утверждения (1310 мс), было меньше, чем затраченное на оценку второго (1380 мс), а оно, в свою очередь, меньше, чем на оценку третьего (1470 мс).

24 .Эвристический потенциал функционирования семантической памяти. Принцип наследования свойств.

Семантическая память – это тип памяти, отражающий обобщенные знания о мире. Впервые описал семантическую память Майкл Росс Квиллиан в 1970 году. Он предложил сетевую модель, объясняющую, как в памяти организуется и извлекается информация, представляющая знания о мире.

Квиллиан предположил, что информация в семантической памяти хранится в иерархически организованных сетевых структурах, которые состоят из узлов и отношений между ними. Принцип наследования свойств: каждому узлу соответствует набор свойств, который является истинным для него самого и всех категорий нижележащего уровня. Доказательство: гипотеза когнитивной экономии. Предполагается, что если задать вопрос про объект, то время ответа на вопрос будет зависеть от пройденного расстояния по сети. Это доказывает то, что семантическая память существует в виде сети. Квиллиан, эксперимент: испытуемым предлагалось оценить истинность утверждений типа «канарейки могут петь», «канарейки имеют перья»,«канарейки имеют кожу». Измерялось время реакции. Результат: время, затраченное на оценку истинности первого утверждения (1310 мс), было меньше, чем затраченное на оценку второго (1380 мс), а оно, в свою очередь, меньше, чем на оценку третьего (1470 мс).

Элеонор Рош дополнила модель Квиллиана, введя понятие степень категориального членства – степень, в которой тот или иной объект является типичным представителем своей категории. Время, затраченное на идентификацию более типичных представителей было меньше, чем затраченное на идентификацию менее типичных представителей. Конрад выяснил, что важна также эмпирическая значимость свойства. Кодирование объектов связано с деятельностью. Испытуемые затрачивали меньшее время на то, чтобы оценить ложность или истинность такого высказывания, как «яблоки съедобны», чем такого, как «яблоки имеют темные косточки». Факт того, что яблоки можно есть, является для нас более важным, хотя формально первое свойство находится дальше от узла “яблоки”, чем второе.

Модель распространяющейся активации, Дж. Лофтус, Коллинс: расстояния между объектами обозначают степень их семантической связанности (безразлично по какой причине ­ логической или эмпирической ­ она сложилась). Возбуждение, вызванное активацией одной из единиц, распространяется по сети, повышая доступность связанных с ней элементов. Уровень активации понижается по мере увеличения дистанции между единицами и с течением времени.

25 .Принцип специфичности кодирования в эпизодической памяти. Примеры экспериментальных исследований .

Эпизодическая память (Э. Тульвинг) – тип памяти, в котором хранятся эпизоды прошлого. Это эволюционно поздняя, легко уязвимая система памяти, ориентированная на прошлое. Информация фиксируется в ней прямо, порядок событий в памяти соответствует хронологическому порядку фиксации в памяти. В эпизодической памяти информация не претерпевает изменений, не генерализуется и не развивается. Фактор времени играет большую роль, временная интерференция способна нарушить доступ к информации. Обращение к эпизодической памяти меняет ее содержание (факт обращения фиксируется в самой памяти).

Принцип специфичности кодирования – заключается в том, что доступность информации определяется совпадением ключевых элементов ситуации запоминания и извлечения. Ключевыми элементами может являться состояние (пьяный - трезвый), место (под водой - на суше), окружающий фон (Моцарт – джаз – тишина), запахи (запах шоколада) и т.д. Принцип специфичности кодирования действует даже тогда, когда ключевой элемент не осознается (например, запах). Результат несовпадения ситуации кодирования и ситуации воспроизведения становится феноменом ситуативного забывания (воспоминание недоступно из-за несовпадения ключевых признаков во время кодирования и воспроизведения). При этом принцип специфичности предполагает пассивность субъекта. Но есть комбинированная трактовка – принцип деятельной специфичности. Тогда стабильно запоминается та информация, которая соответствует разворачивающейся деятельности, а в иной ситуации «пропуски» заполняются исходя из требований новой задачи.

Эксперимент Дж. Эйча: испытуемые заучивали ряд слов после принятия определенной дозы алкоголя. Результат воспроизведения оказывался лучше после принятия такой же дозы алкоголя. Д. Годден и А. Бэддели: похожие результаты для аквалангистов, которые заучивали и воспроизводили списки слов под водой и на суше. В рамках эпизодической выделяют ретроспективную и проспективную память. Ретроспективная хранит воспоминания о прошлом, а проспективная – о будущем (удержание намерений). Успешность вспоминания информации из каждой системы почти не коррелирует, поэтому проспективная память признана относительно самостоятельной. На эффективность работы проспективной памяти оказывают влияние многие факторы: важность и сложность задания, время, на которое отсрочено действие, то, чем заполнено это время и т.д. Если намерение важно, то оно сохраняется вне зависимости от того, чем занимался человек в промежуточной деятельности. Если намерение неважное, то лучше вспомнится оно, если промежуточная деятельность была простой и скучной.

Нарушения в области мозга, отвечающей за это, ведут к «полевому эффекту», когда поведение человека полностью обусловлено текущей ситуацией (входит в дверь, потому что она открыта, рисует, потому что видит карандаши и т.д.).

Или см вопрос 28 из блока А

26. Индивидуальные различия в организации семантической памяти. Эмпирическая «картография» Моара .

Люди значительно отличаются друг от друга по устройству семантической памяти, как было подтверждено экспериментально. Я. Моар просил испытуемых, часть из которых были жителями Кембриджа (Англия), часть ­ жителями Глазго (Шотландия), начертить линии, отражающие соотношения между парами городов Лондон - Эдинбург, Эдинбург ­- Бирмингем, Бирмингем -­ Лондон и Лондон - Ньюкасл. Потом с помощью компьютера на основе полученных оценок были созданы «карты». Легко заметить, что испытуемые из Глазго не пропорционально преувеличивали размеры своей Шотландии, когда жители Кембриджа воспринимали её как маленький клочок суши, а Англия казалась кембриджцам огромной, когда шотландцы её размеры сильно преуменьшили.

Результаты проведенных исследований усложняют исходное представление о семантических сетях, каждому узлу соответствует определенное множество свойств, характеризующих понятия (субхранилища). Состав субхранилищ определяется 1) логическими отношениями между объектами; 2) степенью категориального членства объекта; 3) эмпирической значимостью того или иного свойства в приложении к данному объекту; 4) неявными, часто неосознаваемыми параметрами категоризации объектов мира. Вариантами таких субхранилищ могут быть научные понятия, житейские, образы, схемы, сценарии (фиксированные последовательности действий).

27 .Эффект универсального «пика» автобиографических воспоминаний.

Эффект «пика» воспоминаний, Д. Рубин, С. Ветцлер, Р. Небис: люди вспоминают непрапорционально высокое количество автобиографических событий, относящихся к периоду 16 – 26 лет. Испытуемые должны были вспомнить как можно больше в ответ на ключевые слова. Средний возраст респондентов – 70 лет. Эффект пика воспоминания (своеобразного сгущения воспоминаний) наблюдался в периоде между 15 и 30 годами.

Распределение количества воспоминаний:

1) Много воспоминаний о событиях, которые произошли за несколько лет до опроса (это отражает оперативную составляющую автобиографической памяти).

2) Низкое количество воспоминаний о раннем детстве (следствие детской амнезии – люди обладают лишь фрагментарными воспоминаниями о событиях до трех лет).

3) Пик воспоминания на 15 – 30 лет.

Когда людей просили вспомнить наиболее яркие и существенные события, эффект оперативной составляющей стирался, а процент воспоминаний, относящихся к периоду «пика» возрастал с 17% до 57 %.

Оказалось также, например, что книги, музыка и фильмы, относящие к периоду 15 – 30 лет, оцениваются как наиболее приятные и оставившие наиболее сильные впечатления.

Взрослые люди вспоминают большее количество событий, относящихся к их юности.

Интепретация феномена «пика» воспоминания:

1) Результат присвоения культурных жизненных сценариев: типичное содержание жизненных событий, которое разделяется всеми членами культурной общности.

Исследование Д. Рубена, Д. Бернтсена: испытуемые должны были указать семь наиболее вероятных событий жизни человека, датировать, оценить субъективную важность и вероятность.

Было установлено:

– культурные сценарии, действительно, существуют и разделяются большинством членов общества; наиболее часто указываемые составляли 90% от указанных вообще.

– культурные сценарии включают в себя главным образом социально желательные, позитивные события.

– даты событий, вошедших в культурные сценарии, образуют эффект «пика»: 6 из 7 наиболее часто упоминаемых относятся к возрасту 16 – 30.

Эффект «пика» наблюдается только для позитивных событий. Эффект «пика» - реализация механизма структурировании поступающей автобиографической информации в соответствии с культурными сценариями.

2) Продукт формирования личности: автобиографическая память – один из главных ресурсов формирования и поддержания личности, поэтому можно предположить существование особого механизма, который сохраняет высокую плотность воспоминаний, связанных с юностью, с моментом приобретения первой самостоятельной идентичности.

М. Шам (исследователь календарных пиков в автобиографической памяти): связывает «пик» воспоминаний с периодом первых опытов, которые запечатлеваются в силу своей новизны и эмоциональной насыщенности. Эти моменты в дальнейшем используются как «опорные точки памяти». Существуют моменты, так называемой «прерванной идентичности» (переоценка, переопределение своей личности) - воспоминания о переломных событиях. Они обеспечивают человеку возможность рефлексировать путь развития, становления своей личности, разбивать его на осмысленные этапы. Концентрация важных событий вокруг переломных моментов позволяет вспомнить как можно больше о тех периодах жизни. Обычно предшествующие переломным события предвещают о будущих серьезных изменениях.

– ожидание переломного моменты должно стимулировать запечатление событий – предшественников;

– переломное событие часто является неожиданным, поэтому первоначально воспринятому, как не слишком важное, позже приписывается вторичная значимость.

Высокая насыщенность воспоминаний периода, который следует после переломного момента, говорит о том, что человек после переломного моменты воспринимает все более обостренно – эффект шлейфа. Исследование В.В. Нурковой: 40 испытуемых, они должны были изложить свою автобиографию, а затем отметить переломные моменты. Наиболее доступные для воспроизведения воспоминания скапливались вокруг переломных моментов, возрастание доступности этих периодов описывает степенной функцией. Эффект «пика» воспоминаний не является только возрастным универсальным феноменом, важен фактор индивидуальной конфигурации событий, пережитых как переломные.



mob_info