Пример расчета воздухообмена в помещении бассейна. Потери тепла за счет вентиляции и испарения

Добавить в избранное

  • Конструкция
  • Монтаж
  • Обслуживание

Пример расчёта вентиляции в бассейне

Каждый владелец частного дома старается максимально уютно облагородить и дом, и всю принадлежащую ему территорию. И большинство действий направляются на отведение площадей под зону отдыха, как пассивного, так и активного. Одним из самых популярных вариантов обустройства такой зоны является строительство бассейна, который можно использовать для занятий спортом или празднования торжеств. Практически все понимают, что устройство искусственного водоема не является простым делом. И если этап гидроизоляции чаши бассейна — более или менее известное дело, то расчет вентиляции бассейна для большинства как обывателей, так и некоторых строителей является закрытой книгой.

Все дело в том, что раньше вентиляция водоема либо вовсе не предусматривалась в проекте, либо делалась спустя рукава. Так как конденсируемая влага все равно приводила к тому, что образовывалась плесень, металлические конструкции ржавели и серьезно портились деревянные элементы сооружения. Судя по таким неприятным последствиям, можно говорить о высокой необходимости устройства вентиляционной системы в бассейне. Тем более что на современном рынке, в целях борьбы с влажностью, представлено различное вентиляционное оборудование. С его помощью происходит процесс осушения помещения, но воздухообмен не обеспечивается. Есть вариант осуществления воздухообмена, при котором вытяжной воздух выбрасывается без потерь тепла.

Этапы расчета вентиляции бассейна

Для удобства проведения проектирования бассейна с грамотно устроенной системой вентиляции специалисты рекомендуют разделить весь этот сложный процесс на несколько этапов.

На первом этапе происходит подбор оборудования и материалов, необходимых для ведения работ. Подберите опытную бригаду проектировщиков и монтеров, которые предложат несколько различных вариантов. Отличаться они могут используемым при устройстве оборудованием либо же ценой и особенностью монтажа. При подборе оборудования необходимо стремиться к сотрудничеству с фирмами-производителями, которые с помощью имеющегося программного обеспечения помогут подобрать все максимально точно, избежав при этом лишних трат времени и материальных средств.

На втором этапе создается рабочий проект, спецификация и подробно проектируются схемы для монтажа с необходимыми разрезами. Следующий этап связан с созданием исполнительной документации, такой как чертежи с техническими характеристиками, паспортами и инструкциями для установленного оборудования.

Вернуться к оглавлению

Пример расчета вентиляции

Плавательные бассейны, установленные в закрытых помещениях, эксплуатируются круглогодично. При этом температура воды в чаше бассейна составляет 26°C, а в рабочей зоне температура воздуха равна 27°С. Относительная влажность составляет 65%.

Поверхность воды, совместно с влажными ходовыми дорожками, отдает в воздух помещения водяные пары в больших объемах. Часто производители стремятся пойти путем остекления большей площади помещения, дабы создать идеальные условия для притока солнечной радиации. Но, в то же время, нужно еще и правильно рассчитать особенности вентиляции закрытого бассейна.

Помещение, в котором установлен бассейн, принято оборудовать системой водяного отопления, благодаря которому полностью исключаются тепловые потери. Для того чтобы предотвратить конденсацию влаги на поверхности окон, с внутренней стороны, важно все отопительные приборы установить под окнами непрерывной цепью. Чтобы поверхность стекол изнутри была нагрета на 1°С выше, чем температура точки росы.

Определите температуру точки росы.

В теплый период этот показатель должен быть равен 18°С, а в холодное время года не ниже 16°С.

Стоит иметь в виду, что и на испарение воды будет затрачиваться некоторое количество тепла, которое будет заимствоваться из воздуха в данном помещении.

Конструкция чаши окружается ходовыми дорожками, имеющими электрический или тепловой подогрев, при помощи которого температура поверхности этих дорожек примерно равна 31°С.

Вернуться к оглавлению

Частный пример расчета воздушного обмена в помещении поможет во всем легко разобраться.

Предположим, что бассейн устраивается в Москве. В теплый период здесь температура равна 28,5°С.

В холодный сезон температура опускается до -26°С.

Площадь чаши строящегося бассейна равна 60 кв. м, его габариты 6х10 м.

Вся площадь дорожек равна 36 кв. м.

Размер помещения: площадь — 10х12 м = 120 кв. м, высота равна 5 метрам.

Число людей, которые могут одновременно находиться в бассейне, — 10 человек.

Температура в воде — не более 26°С.

Воздушная температура в рабочей зоне = 27°С.

Температура воздуха, отводящегося из верхней части помещения, равна 28°С.

Теплопотери помещения измеряются в размере 4680 Вт.

Вернуться к оглавлению

Сперва рассчитайте воздухообмен в теплый период

Поступление явного тепла от:

  • освещения в холодный сезон определяется согласно;
  • пловцов: Qпл =qя.N(1-0,33)=60.10.0,67 = 400 Вт, за долю, равную коэффициенту 0,33, берется время, которое пловцы проводят в бассейне;
  • обходных дорожек рассчитывается;

Коэффициент отдачи тепла от обходных дорожек равен 10 Вт/кв.м°С

Переходим к теплопотерям, которые происходят при нагревании воды в чаше водоема. Подсчитать их можно следующим образом.

Избытки явного тепла в светлое время суток рассчитываются.

Вернуться к оглавлению

Поступление влажности

Определите влаговыделение от плавающих в бассейне спортсменов при помощи следующей формулы Wпл = q . N (1- 0,33) = 200 . 10(1- 0,33) = 1340 г/ч

Поступление влаги в воздух с поверхности бассейна рассчитывается следующим образом.

В этой формуле за показатель А принимается опытный коэффициент, учитывающий разность интенсивности испарения с водной поверхности влаги между моментом нахождения в воде пловцов и ситуации, когда вода спокойна, то есть когда в воде никого нет.

Для тех бассейнов, в которых проводятся оздоровительные плавательные процедуры, А принимают за 1,5;

F — это площадь поверхности воды, равно площади 60 кв. м.

Необходимо получить коэффициент испарения, который измеряется в кг/кв.м*ч и находится,

в которой V определяет подвижность воздуха над чашей бассейна и принимается за 0,1 м/с. Подставив ее в формулу, получим коэффициент испарения, равный 26,9 кг/кв.м*ч.

Что такое комфорт?

Комфорт - это сочетание условий внешней среды, в которых человек чувствует себя хорошо, не рискуя ухудшить свое здоровье. Так, например, для комфортного самочувствия одетых людей в помещении температура воздуха при относительной влажности воздуха 40-60% должна быть от 18С до 20С, температура поверхности oгpaждaющиx конструкций (стен) - от 14С до 19С, температура пола - около 20С. При этом допускается движение вoздухa со скоростью до 0,3 м/с.
Эти цифры основываются на следующих средних биофизических характеристиках
человека:

    Масса, кг. 60

    Площадь поверхности, м.кв 1,8

    Темп.тела 36,5-37

    Темп.кожи 32-33

    Теплообмен,Вт 82

    Объем дыхания м 3 /ч 0,5

    Частота дыхания раз/мин 16

    Частота пульса уд/мин 70-80

    Постоянная мощность Вт 85

При более низкой температуре поверхности стен и на открытом воздухе человек теряет большое количество тепла за счет излучения, и поэтому даже при отсутствии движения воздуха возникает ощущение сквозняка.
Требуемая температура поверхностей достигается за счет их хорошей теплоизоляции, применения воздушных тепловых завес или подогрева теплоизлучателями.
Низкие температуры поверхности пола могут привести к простудным заболеваниям, особенно в тех случаях, когда верхние слои пола обладают высокой теплопроводностью (кафель, бетон). Избежать этого можно за счет хорошей теплоизоляции, применения теплых покрытий или подогрева полов; последнее мероприятие рекомендуется осуществлять только при большой площади полов и температуре воздуха в помещениях ниже 30С. Температура поверхности пола, превышающая в обычных помещениях 24-25С, а в помещениях с бассейном 32-33С, также вредна для здоровья людей.
Слишком низкая влажность воздуха в помещении (особенно в зимнее время, когда наружный воздух содержит очень мало водяных паров) ведет к высыханию слизистых оболочек и увеличивает возможность простудных заболеваний. Высокая влажность воздуха снижает испарение через кожу и ограничивает регулирующие возможности организма по поддержанию температуры тела на постоянном уровне (ощущение духоты).
При слишком высокой скорости движения воздуха возрастает доля тепла, отдаваемая телом за счет конвекции. в целом теплоотдача организма снижается (сужение кровеносных сосудов, в экстремальном случае "гусиная кожа"), и наряду с oхлaжденными зонами, возникают зоны перегрева, приводящие к ощущению сквозняка.

Комфорт в бассейне

Температура воздуха в помещении, где находятся раздетые люди, должна составлять 26-30° С в зависимости от их подвижности: чем выше подвижность человека, тем больше тепла выделяет его тело. У бассейна температура воздуха должна на несколько градусов превышать температуру воды, так как при испарении влаги с водяной пленки, покрывающей тело человека после выхода из бассейна, происходит дополднительный отвод тепла, и возникает ощущение холода при слишком низкой температуре воздуха в помещении. При движении босиком отвод тепла через пол значительно возрастает, поэтому для обеспечения дополнительного комфорта в бассейнах с "холодными" покрытиями полов рекомендуется применять непосредственный подогрев пола или потолочное лучистое отопление и инфракрасные излучатели. Однако, подогрев полов требуется лишь при температуре воздуха ниже 28С или плохой теплоизоляции пола. Требования к влажности воздуха такие же, как и для отдельных помещений, а скорость движения воздуха в рабочей зоне крытых бассейнов не должна превышать 0,3 м/с.

Допустимая температура воды, так же как и температура воздуха около бассейна, в некоторой степени зависит от возможной активности людей. Кроме того, следует помнить, что при одинаковой температуре воды и воздуха охлаждение в воде происходит примерно в 20 раз быстрее, чем на воздухе. в стандартных и крупных плавательных бассейнах с длиной дорожки 25-50 м, где активно занимаются люди, умеющие плавать, достаточна температура воды около 22С, а в учебных плавательных бассейнах с длиной дорожки 8-16 м температура воды должна быть 23-26С. При использовании плавания в медицинских целях (для разгрузки позвоночника у не совсем здоpoвых людей) температура воды должна превышать 26С, а лучше всего равняться 28С (при температуре ниже 25С могут появиться судороги). в связи с этими же соображениями в индтвидуальных крытых бассейнах рекомендуется температура воды 24-28С, а в бассейнах для маленьких детей 28-30С.
в целом в индивидуальных бассейнах должны быть следующие характеристики микроклимата: температура воды 24-28С; температура воздуха на 2-3С выше температуры воды (26-31С). При более низких температурах воздуха возникают неприятные ощущения и опасность простуды. Следует помнить, что более высокая температура воздуха снижает испарения из ванны и, следовательно, уменьшает расход тепла на обогрев воды. Ощущение духоты возникает лишь при слишком высокой относительной влажности воздуха. Не следует снижать температуру воздуха в ночное время, так как из-за роста испарений повышается расход энергии на обогрев.

В открытых бассейнах подвижность людей обычно выше, чем в крытых. Кроме того, температура воздуха здесь часто ниже, а температура излучения- выше, но во всяком случае при наличии солнечной инсоляции. К этому следует добавить благотворное воздействие свежего воздуха, что сохраняет комфортность ощущений также и при более низких температурах и высоких скоростях движения воздуха.

Теплопотери в открытых бассейнах

Температура в открытом бассейне обычно ниже, чем в крытом, и составляет 21-25С. Для улучшения микроклимата и создания дополнительного комфорта, особенно при длительном купальном сезоне или пользовании бассейном в зимнее время рекомендуется осуществлять подогрев пола или лучистое отопление обходной дорожки и подходов к ванне бассейна с помощью электрических инфракрасных излучателей; ванну и подходы к ней по возможности следует защитить от ветра, а при наличии покрытия – установить теплоизлучатели над ванной. Отопление требуется прежде всего в переходные месяцы (апрель, май, сентябрь и октябрь), причем длительность купального сезона принимается равной 6 месяцев: с середины апреля до середины октября.

Поскольку имеет место значительный теплообмен между поверхностью воды и окружающим воздухом, открытыe бассейны следует размещать с учетом защиты от ветра. При круглогодичной эксплуатации бассейна рекомендуется устраивать покрытие с механическим приводом, что позволяет значительно снизить теплопотери и довести эксплуатационные затраты до уровня, сравнимого с летним периодом.
Открытый бассейн без отопления обычно пригоден лишь для кратковременной эксплуатации, так как в этом случае имеют место постоянные теплопотери (особенно ночью). Теплопотери открытого бассейна включают следующие составляющие:

    Потери тепла из-за испарения воды с поверхности ванны и нагрева подпиточной воды.

    Потери тепла из-за естественной конвекции, когда температура воздуха ниже температуры воды.

    Потери тепла вместе с водой, переливающейся через края ванны и разбрызгиваемой при выходе людей из ванны.

    Потери тепла за счет излучения в окружающую среду в ночное время.

    Потери тепла при первичном подогреве воды.

    Потери тепла в грунт, примыкающий к ванне, и окружающий воздух.

    Потери тепла при заполнении ванны теплой водой для промывки фильтров.

Необходимо отметить, что в применявшихся до настоящего времени уравнениях для расчета теплопотерь на испарение не учитывали процессы на границе слоев, что снижало точность получаемых результатов. Средняя температура воздуха в летнее полугодие принималась равной 10С, в то время как фактически эта величина составляет 14-14,5С, а расчетная скорость движения воздуха над ванной 1-4 м/c не соответствует фактической скорости движения воздуха непосредственно над поверхностью воды, которая значительно ниже. Излучение ванны бассейна должно всегда рассматриваться совместно со встречным излучением атмосферы.

Температура воды в ванне бассейна фактически превышает заданное значение на величину 4ОК из-за солнечной инсоляции.

Сильное солнечное излучение предполагает наличие ясного неба, однако обычно встречное излучение атмосферы весьма незначительнО, а излучение ванны, особенно ночью, значительно выше, чем излучение атмосферы при облачной погоде. В связи с этим для расчета рекомендуется принимать для всего сезона постоянную величину солнечной инсоляции, имея в виду, что чем сильнее инсоляция, тем выше температура воды и больше излучение ванны бассейна.

Глубина воды в ванне бассейна не оказывает существенного влияния на энергобаланс и выступает только в качестве характеристики объема. От площади поверхности воды зависит соотношение между снижением температуры и теплопотерями каждой ванны, причем мелкий бассейн остывает и нагревается быстрее, чем глубокий, при одинаковых величинах потерь и поступлений тепла.

Теплопотери открытых бассейнов со стенками в грунте в летнее время обычно можно не учитывать, как как грунт плохо проводит тепло и аккумулирует теплоту, полученную при первичном подогреве. Теплопотери в грунт практически весьма невелики по сравнению с другими видами теплопотерь. Иная картина имеет место в зимнее время для ванн со свободно стоящими стенками и крытых бассейнов.

Как бороться с теплопотерями

Теплоизоляция толщиной в 1 см снижает теплопотери на 80% . Дополнительные потери стенки составляют лишь 15,5 KBтч / дeнь, что соответствует 0,55 кВтч / м 2 в день и при снижении температуры на 0,37К.

Теплоизоляцию бетонных стенок ванны целесообразно выполнять с наружной стороны. В сборных ваннах рекомендуется выкладывать жесткие теплоизоляционные маты между пленкой и наружной оболочкой стенки ванны.
Исследования показали, что применение"темных плиток для облицовки значительно повышает абсорбцию солнечного излучения. Средние изменения величины поглощения солнечной инсоляции при изменении цвета облицовочной плиткиванн различаются весьма существенно, даже при изменении цвета плитки от бело-голубого до сине-голубого. Полноценная эксплуатация бассейнов в зимнее время требует больших энергозатрат. Поэтому для открытых бассейнов рекомендуется зимой использовать укрытия.

В отличие от летнего сезона зимой на температуру воды оказывает влияние теплоотдача в прилегающий грунт. Уже при толщине пеноматериала в 1 см достигается экономия более 25 %.

При циркулярном цикле продолжительностью 8 ч, включая время промывки одного песчаного фильтра, при глубине ванны 1,5 м и разности температур между водой в ванне и свежей водой 13ОК потери тепла на каждую промывку составляют 0,23 кBтч/м 2 (203 ккал/м 2). В индивидуальных бассейнах, где промывка фильтров осуществляется не чаще одного раза в неделю, теплопотерями на промывку можно пренебречь, а в бассейнах гостиниц, где требуется ежедневная промывка фильтров, с этим фактором приходиться считаться. В общественных бассейнах, к которым относятся и гостиничные, в соответствии с нормами Требуется добавка свежей воды в количестве 30 л на одного купающегося что приводит к теплопотерям на подогрев свежей воды в размере около 0,45 кBтч/м 2 в день (390 ккал/м 2 в день).

Существенный элемент теплопотерь открытых бассейнов - испарение - в значительной мере зависит от температуры воздуха. При низких температурах в ночное время испарение воды значительно выше, чем при более дневных температурах.

Поверхностное укрытие

Таким образом, в открытых бассейнах без отопления температура воды возрастает или остается постоянной в дневное время, а ночью значительно снижается. Устройство укрытия над ванной значительно снижает испарение, существенно уменьшает излучение и в некоторой степени снижает теплопотери за счет конвекции. С помощью установки укрытия в период наибольших теплопотерь можно добиться их снижения в открытых бассейнах на 80%. Следует иметь в виду, что в связи с большим удельным весом излучения в суммарных теплопотерях существенное значение имеет теплоизоляция укрытия. Экономия от применения укрытий без теплоизоляции составляет лишь 30-40% по сравнению с теплоизолированным укрытием. Для использования солнечной радиации укрытие следует снять в дневное время. С поверхности укрытия должна удаляться вода (отверстия, перфорация и т.д.), так как скопление дождевой воды на поверхности укрытий способствует потерям тепла при испарении.

Укрытие в виде солнечного коллектора может оставаться над ванной и в дневное время, когда не пользуются бассейном. Такое укрытие из светопрозрачного теплоизолирующего верхнего слоя и прилегающего к воде абсорбирующего слоя значительно улучшает поглощение солнечных лучей по сравнению с открытой ванной. Как показали исследования, при благоприятных погодных условиях применение укрытия в виде солнечного коллектора позволяет эксплуатировать бассейн с температурой воды 23С без дополнительного отопления.

Подогрев воды в бассейнах

При определении стоимости отопления открытых бассейнов существенное значение имеет средний расход тепла, в зависимости от сезона года и температуры воды.

Для расчета затрат на отопление необходимо расход тепла умножить на стоимость 1 кВтч электроэнергии в регионе эксплуатации бассейна.

Когда-то открытые бассейны обогревались от системы домового отопления с использованием противоточного теплообменника. Однако в последние годы появилось много новых вариантов обогрева ванн с использованием агрегатов, серийно выпускаемых промышленностью. Среди этих вариантов следует назвать:

    Обогрев ванн от отопительного котла;

    Прямоточные топливные нагреватели;

    Прямоточные нагреватели с электроприводом;

    Тепловые насосы;

    Обогрев ванн с помощью солнечных коллекторов.

Во всех системах вода подогревается до поступления в ванну бассейна. Прямые системы обогрева с помощью труб, расположенных непосредственно в ванне, или электронагрев облицовочных плиток не нашли применения по гигиеническим и экномическим соображениям.

Oбorpeв бассейна от котельной в свое время обогрев открытого бассейна обычно осуществлялся путем подключения к домовой системе отопления. в летнее время, когда отопление помещений дома отключено, мощность котла использовалось не полностью, что сильно снижало эффективность его работы.

Расчет теплообменника

Для расчета системы отопления можно исходить из того, что Она должна эксплуатироваться 24 ч в сутки. Поэтому минимальная мощность противоточного аппарата должна равняться частному от деления максимальных ежедневных потерь тепла на 24 ч. Время на первичный разогрев определяется как произведение площади ванны на прирост температуры воды и удельное теплопотребление, деленное на мощность противоточного аппарата.

Топливные нarpeвaтели

Для поддержания нормальной температуры воды в бассейне применяются следующие нагревательныеагрегаты:
нагреватели, работающие на нефтяном жидком топливе; обычно они имеют собственный водяной насос или подключаются в циркуляционную линию (в участок подачи воды после фильтров). Их мощность составляет, как правило, около 45 кВт (40000 ккал/час). Коэффициент полезного действия 70-80%;

    газовые нагреватели, работающие на пропане, с встроенным фильтром или без него (в последнем случае с циркулярным насосом). Их мощность составляет 37 кВт (32000 ккaл/ч). Расход пропана около 3,2 KГ/ч. Коэффициент полезного действия около 80%;

    стандартные газовые водонагреватели мощностью 17,5 кВт (15000 ккал/ч), 23 и 28 кВт. Подключаются в циркуляционную линию за фильтром насоса. Система регулируется количеством пропускаемой воды. Термостат связан с насосом или смесителем; при недостатке воды отключается подача газа. Требуется ежегодная очистка внутренних элементов нагревателя. Коэффициент полезного действия около 80%.

Электрические нaгpeватели

Эти приборы выпускаются специально для подогрева воды в бассейнах и оборудованы регулятором температуры. Работают от электросети с соответствующими характеристиками по мощности. в зависимости от размеров бассейна и климата местности применяются нагреватели мощностью от 3 до 18 кВт, встроенные в систему. Их можно устанавливать в основной линии (на участке фильтрующее устройство - впускные отверстия) или в дополнительной ветви-байпасе.

Мощность прямоточного электронагревателя, необходимого вашему бассейну, определяется как отношение максимальной суточной теплопотери к длительности работы.

Солнечные коллекторы

В связи с относительно небольшой разностью температур между наружным воздухом и водой плавательного бассейна (100К), коэффициент полезного действия солнечных коллекторов, используемых для обогрева открытых бассейнов, в летнее время относительно высок: каждый 1 м 2 коллектора дает от трех (апрель) до пяти кВт (июль, август).

Коллекторы, подключенные непосредственно к ванне бассейна, подвержены коррозии и должны выполняться из соответствующих материалов. в них также могут иметь место отложения карбонатной накипи. Поэтому их применяют только там, где жесткость воды строго контролируется.

Важным требованием является возможность регулирования потока воды через коллектор, так как он работает в качестве нагревателя только в дневное время, а в ночное время коллектор может оказаться причиной нежелательного охлаждения ванны. Регулирование температуры воды в бассейне достигается путем автономного подключения.

С наступлением весны появляется вопрос подогрева воды в бассейне. Особенно актуально это в гостиничных комплексах, которые имеют уличный бассейн. Не секрет, что любая гостиница нужна, прежде всего, для получения прибыли. Поэтому бассейн с подогретой водой позволяет такой гостинице увеличить курортный сезон, привлекая туристов дополнительным преимуществом.

Понятно, что бассейн без подогрева отличная штука, но не в май или сентябрь. В эти месяцы количество желающий искупаться в прохладной водичке, будет стремиться к нулю. Значит, чтобы привлечь туристов, воду в бассейне нужно подогреть.

Как нагреть воду в бассейне?

В Краснодарском крае популярностью пользуются способы нагрева воды с помощью:

  • Солнечных вакуумных коллекторов или панелей;
  • Термальной водой;
  • Тепловыми насосами;
  • Различными котлами (дизельными, твердотопливным);
  • Теплосетями;
  • Электричеством;

Давайте внимательно рассмотрим каждый способ, узнаем плюсы и минусы, выясним, чем же выгоднее всего греть воду в бассейне. Цель этой статьи научить вас тому, чтобы и вы разобрались и поняли логику, как считать и что считать.

В первую очередь это нужно для того, чтобы горе-мастера «не впарили » вам то, что работать не будет. И в нашей практике часто встречаются Заказчики, которым продали то солнечных коллекторов, то тепловых насосов, но либо эти решения не работают, либо работают плохо. Как правило, это все из-за того, что вообще никто ничего не считает.

Как договариваются Заказчик с Подрядчиком?

Диалоги между Заказчиком и такими Подрядчиками строятся примерно так:
Заказчик : надо сделать подогрев воды в бассейне.
Подрядчик : чем вам воду нагреть?
Заказчик : не знаю, а что вы можете предложить?
Подрядчик : давайте солнцем?
Заказчик : давайте. А сколько будет стоить?
Подрядчик : Один миллион.
Заказчик : Дорого. Как сделать дешевле?
Подрядчик : Есть вариант сделать за семьсот тысяч.
Заказчик : Делайте.

И никто не задает себе вопрос, а за счет чего произошло удешевление? Уменьшили коллекторную массу? Поставили коллекторы или панели похуже? А потом точно все будет работать и нагревать воду как нужно?

Читайте также:

Однажды мне наш Заказчик озвучил результаты переговоров с предыдущим потенциальным подрядчиком. Дескать, подрядчик пообещал заказчику сделать подогрев воды в бассейне с помощью солнечных вакуумных коллекторов, ну и заказчик начал вникать в технические моменты. Начал задавать вопросы по мощности и т.д. И вот выяснилось, что этот подрядчик имел ввиду такую систему нагрева воды, что если на улице температура 22-24°С, то все будет прекрасно греть.

Если температура воздуха 22-24°С, то воду вообще можно не подогревать. Это же логично . И нет никакого смысла ставить систему подогрева на пару градусов, это откровенная халтура.
Но, к сожалению, в России деятельность таких подрядчиков никак не регламентируется. И получается так, что Заказчик вместо решения своих проблем, оказывается втянут в какие-то эксперименты, за свой же счет.

Для того, чтобы получить максимальное понимание, давайте займемся расчетами .

Представим, что у нас есть обычный бассейн, глубиной 1,5 метра, поверхностью зеркала 100м². Объем воды в таком бассейне будет: 1,5 метра * 100 метров² получаем 150 метров кубических или 150м³.
Тепловые потери каждого бассейна считаются индивидуально , мы для простоты расчетов примем, что теплопотери 200 Вт/час с каждого квадратного метра поверхности бассейна. Поверхность бассейна у нас равнялась 100м², значит, теплопотери этого бассейна будут равны 20 000 Вт/час или 20 кВт/час. Следовательно, для того, чтобы нам возместить тепловые потери бассейна, нам нужен источник тепла, мощностью не менее 20 кВт/час.

Рис. 5.1. Зависимость коэффициента инсоляции от расстояния до окна. Коэффициент инсоляции равен угловом у соотношению между поверхностью тела и окна и прямо пропорционален теплоотдаче окна

Рис. 5.2. Теплоотдача человека в зависимости от температуры воздуха. Чем ближе температура воздуха к температуре человеческого тела, тем больше доля испарений в суммарной теплоотдаче

Рис, 5.3. Граница ощущения духоты человеком

ру воздуха в ночное время, так как из-за роста испарений повышается расход энергии;

скорость движения воздуха 0,15-0,3 м/с. При больших скоростях в рабочей зоне возможны сквозняки;

относительная влажность воздуха в помещении 50-60% (макс. 70%). При более высокой влажности воздуха возникает ощущение духоты, а также опасность образования конденсата на ограждающих конструкциях;

температура поверхности стен и покрытий макс. 10 К, лучше на 3-5 К ниже температуры воздуха. Такие характеристики достигаются за счет хорошей теплоизоляции(К < 0,65). При более низких значениях температуры стен покрытия возникают большие теплопотери за счет теплоизлучения тела (ощущение сквозняка) и образуется конденсат на строительных элементах.

В открытых бассейнах подвижность людей обычно выше, чем в крытых. Отсюда следует, что температура воздуха здесь часто ниже, а температура излучения -выше, но во всяком случае при наличии солнечной инсоляции. К этому следует добавить благотворное воздействие свежего воздуха, что сохраняет комфортность ощущений также и при более низких температурах и высоких скоростях движения воздуха.

Поэтому температура в открытом бассейне обычно ниже, чем в крытом, и составляет 21-25°С. Для улучшения микроклимата и создания дополнительного комфорта, особенно при длительном купальном сезоне или пользовании бассейном в зимнее время рекомендуется осуществлять подогрев пола или лучистое отопление обходной дорожки и подходов к ванне бассейна с помощью электрических инфракрасных излучателей; ванну и подходы

к ней по возможности следует защитить от ветра, а при наличии покрытия-установить теплоизлучатели над ванной.

Отопление требуется прежде всего в переходные месяцы (апрель, май, сентябрь и октябрь), причем длительность купального сезона принимается равной 6 мес-с середины апреля до середины октября.

Поскольку имеет место значительный теплообмен между поверхностью воды и окружающим воздухом, открытые бассейны следует размещать с учетом защиты от ветра (рис. 5.6). При круглогодичной эксплуатации бассейна рекомендуется устраивать покрытие с механическим приводом, что позволяет значительно снизить теплопотери и довести эксплуатационные затраты до уровня, сравнимого с летним периодом.

Отрытый бассейн без отопления обычно пригоден лишь для кратковременной эксплуатации, так как наблюдаются постоянные теплопотери (особенно ночью).

ТЕМПЕРАТУРА ВОЗДУХА РАВНА ТЕМПЕРАТУРЕ ИЗЛУЧЕНИЯ

Теплопотери открытого бассейна включают сле-

дующие составляющие:

1. Потери тепла из-за испарения воды с поверх-

ности ванны и нагрева подпиточной воды.

2. Потери тепла из-за естественной конвекции,

когда температура воздуха ниже температуры воды.

3. Потери тепла вместе с водой, переливающей-

ся через края ванны и разбрызгиваемой при выходе

людей из ванны.

4. Потери тепла за счет излучения в окружаю-

щую среду в ночное время.

5. Потери тепла при первичном подогреве воды.

6. Потери тепла в грунт, примыкающий к ванне,

и окружающий воздух.

7. Потери тепла при заполнении ванны теплой

водой для промывки фильтров.

Потери тепла по п.

3 примерно равны поступле-

нию тепла от тел пловцов, а потери тепла по п. 6

для ванн, заглубленных в грунт, принимают во

внимание только при первоначальном подогреве,

когда примыкающие элементы нагреваются до тем-

пературы воды и в дальнейшем практически аккуму-

полученную теплоту.

Известны уравнения, по которым можно рассчи-

тать величину всех составляющих теплопотерь от-

бассейна (табл.

Необходимо отметить, что в применявшихся до

настоящего времени уравнениях для расчета тепло-

на испарение

учитывали процессы на

что снижало точность

получаемых

Рис. 5.5. Субъективное ощущение температуры: при высоких скоростях движения воздуха он кажется более холодным, чем на самом деле

Рис. 5.4. Оптимальная термическая комфортность раздетых людей при тепловой мощности 60 Вт

результатов. Средняя температура воздуха в летнее полугодие принималась равной 10°С, в то время как фактически эта величина составляет 14-14,5°С, а расчетная скорость движения воздуха над ванной 1-4 м/с не соответствует фактической скорости движения воздуха непосредственно над поверхностью воды, которая значительно ниже. Излучение ванны бассейна должно всегда рассматриваться совместно со встречным излучением атмосферы.

Температура воды в ванне бассейна фактически превышает заданное значение на величину 4К из-за солнечной инсоляции (рис. 5.7).

Сильное солнечное облучение предполагает наличие ясного неба, однако обычно встречное излучение атмосферы весьма незначительно, а излучение ванны, особенно ночью, значительно выше, чем излучение атмосферы при облачной погоде. В связи с этим для расчета рекомендуется принимать для всего сезона постоянную величину солнечной инсоляции, имея в виду, что чем сильнее инсоляция, тем выше температура воды и больше излучение ванны бассейна.

Глубина воды в ванне бассейна не оказывает существенного влияния на энергобаланс и выступает только в качестве характеристики объема. От площади поверхности воды зависит соотношение между снижением температуры и теплопотерями каждой ванны, причем мелкий бассейн остывает и нагревается быстрее, чем глубокий, при одинаковых величинах потерь и поступлений тепла.

Таблица 5.2

Количество тепла на 1 м2 поверхности воды для выравнивания снижения температуры на 1 К для ванн с различной глубиной приведено в табл. 5.3.

Теплопотери открытых бассейнов со стенками я грунте в летнее время обычно можно не учитывать, так как грунт плохо проводит тепло и аккуму-

КВТ-Ч/ДЕНЬ

Рис. 5.6. Теплопотери с поверхности ванны при купальном сезоне длительностью 5 мес

лирует теплоту, полученную при первичном подогреве. Теплопотери в грунт практически весьма невелики по сравнению с другими видами теплопотерь. Иная картина имеет место в зимнее время для ванн со свободно стоящими стенками и крытых бассейнов.

Теплопотери ванн со свободно стоящими стенками при средней температуре воздуха 14°С в летнее полугодие приведены в табл. 5.4. Максимальные значения составляют 150% от приведенных.

Теплоизоляция толщиной в 1 см снижает теплопотери на 80%. Дополнительные теплопотери стенки составляют лишь 15,5 кВт ч/дн, что соответствует 0,55 кВт-ч/(м2 дн) на 1м поверхности воды и 0,37 К снижения температуры.

Теплоизоляцию бетонных стенок ванны целесообразно выполнять с наружной стороны. В сборных ваннах рекомендуется выкладывать жесткие теплоизоляционные маты между пленкой и наружной оболочкой стенки ванны.

Исследования показали, что применение темных плиток для облицовки ванн значительно повышает

Рис. 5.7. Распределение температур и тепловой баланс плавательного бассейна глубиной 1,5 м с температурой воды 23 С

абсорбцию солнечного излучения. Средние изменения величины поглощения солнечной инсоляции при изменении цвета облицовочной плитки ванн приведены в табл. 5.5.

Полноценная эксплуатация бассейнов в зимнее время требует больших энергозатрат. Поэтому для открытых бассейнов рекомендуется зимой использовать укрытия.

В отличие от летнего сезона зимой оказывает влияние теплоотдача в прилегающий грунт. Ежедневные теплопотери в открытом бассейне ванны размером 4 х 8 х 1,5 м на 1 м 2 воды приведены в табл. 5.6.

Таблица 5.6

Уже при толщине пеноматериала в 1 см коэффициент к становится равным 2,5 Вт/ (м2 К) и достигается экономия более 25%.

При циркулярном цикле продолжительностью 8 ч и длительности промывки 5 мин теряется около 1% емкости ванны для промывки одного песчаного фильтра. При глубине ванны 1,5 м и разности температур между водой в ванне и свежей водой 13 К потери тепла на каждую промывку составляют 0,23 кВт ч/м2 (203 ккал/м2 ).

В индивидуальных бассейнах, где промывка фильтров осуществляется не чаще одного раза в неделю, теплопотерями на промывку можно пренебречь, а в бассейнах гостиниц, где требуется ежедневная промывка фильтров, с этим фактором приходится считаться. В общественных бассейнах, к которым относятся и гостиничные, в соответствии с нормами требуется добавка свежей воды в количестве 30 л на одного купающегося, что приводит к теплопотерям на подогрев свежей воды в размере около 0,45 кВт ч/(м2 дн) .

Существенный элемент теплопотерь открытых бассейнов - испарение - в значительной мере зависит от температуры воздуха. При низких температурах в ночное время испарение воды значительно выше, чем при более высоких дневных температурах.

Таким образом, в открытых бассейнах без отопления температура воды возрастает или остается постоянной в дневное время, а ночью значительно снижается. Устройство укрытия над ванной значительно снижает испарение, существенно уменьшает излучение и в некоторой степени снижает теплопотери за счет конвекции. С помощью установки укрытия в период наибольших теплопотерь можно добиться их снижения в открытых бассейнах на 80%

(рис. 5.8). При этом следует иметь в виду, что в связи с большим удельным весом излучения в суммарных теплопотерях существенное значение имеет теплоизоляция укрытия. Экономия от применения укрытий без теплоизоляции составляет лишь 30-40% по сравнению с теплоизолированным укрытием. Для использования солнечной радиации укрытие следует снять в дневное время. С поверхности укрытия должна быть удалена вода (отверстия, перфорация и т.д.), так как скопление дождевой воды на поверхности укрытий способствует потерям тепла при испарении.

Укрытие в виде солнечного коллектора может оставаться над ванной и в дневное время, когда не пользуются бассейном. Такое укрытие из светопрозрачного теплоизолирующего верхнего слоя и прилегающего к воде абсорбирующего слоя значительно улучшает поглощение солнечных лучей по

Равнению с открытой ванной. Как показали исследования, при благоприятных погодных условиях применение укрытия в виде солнечного коллектора позволяет эксплуатировать бассейн с температурой зоды 23°С без дополнительного отопления.

При определении стоимости отопления открытых бассейнов существенное значение имеет средний

расход тепла, который может приниматься по табл. 5.7 в зависимости от сезона года и температуры воды.

Для расчета затрат на отопление необходимо расход тепла умножить на стоимость 1 кВт-ч.

Долгое время открытые бассейны обогревались от системы домового отопления с использованием противоточного теплообменника. Однако в последние годы появилось много новых вариантов обогрева ванн с использованием агрегатов, серийно выпускаемых промышленностью:

обогрев ванн от отопительного котла; прямоточные топливные нагреватели; прямоточные нагреватели с электроприводом; тепловые насосы; обогрев ванн с помощью солнечных коллек-

Во всех системах вода подогревается до поступления в ванну бассейна. Прямые системы обогрева

с помощью труб, расположенных непосредственно

в ванне, или электронагрев облицовочных плиток не нашли применения но гигиеническим и экономическим соображениям.

ОБОГРЕВ ВАННЫ ОТ КОТЕЛЬНОЙ

Обогрев открытого бассейна обычно осуществляется путем подключения к домовой системе отопления. В летнее время, когда отопление помещений дома отключено, мощность котла используется неполностью, что сильно снижает эффективность его работы (рис. 5.9).

РАСЧЕТ ТЕПЛООБМЕННИКА

Для расчета системы отопления можно исходить из того, что она должна эксплуатироваться 24 ч в сутки. Поэтому минимальная мощность противоточного аппарата должна равняться частному от деления максимальных ежедневных потерь тепла на 24 ч. Время на первичный разогрев определяется как произведение площади ванны на прирост температуры воды и удельное теплопотребление, деленное на мощность противоточного аппарата.

Рис. 5.9. Коэффициент полезного действия системы горячего водоснабжения в зависимости от нагрузки. При незначительной нагрузке КПД очень низок

ПРЯМОТОЧНЫЕ ТОПЛИВНЫЕ НАГРЕВАТЕЛИ

Применяются следующие нагревательные агрегаты:

передвижные нагреватели, работающие на нефтяном жидком топливе; обычно они имеют собственный водяной насос или подключаются в циркуляционную линию после фильтров. Их мощность

прямоточные нагреватели, работающие на пропане, с встроенным фильтром или без него (в последнем случае с циркулярным насосом). Их мощность составляет 37 кВт (32 000 ккал/ч). Расход пропана около 3,2 кг/ч. Коэффициент полезного действия около 80% (рис. 5.10);

стандартные газовые водонагреватели мощностью 17,5 кВт (15 000 ккал/ч), 23 и 28 кВт. Подключаются в циркуляционную линию за фильтром насоса. Система регулируется количеством пропускаемой воды. Термостат связан с насосом или смесителем; при недостатке воды отключается подача газа. Требуется ежегодная очистка внутренних элементов. Коэффициент полезного действия около 80%.

Рис. 5.10. Прямоточный газовый нагреватель для обогрева открытого бассейна

1-прямоточный газовый нагреватель; 2-регулирующее устройство; 3-термометр; 4-фильтр; 5-обратный клапан; 6-на- сос; 7-выпуск воды

ПРЯМОТОЧНЫЕ ЭЛЕКТРИЧЕСКИЕ НАГРЕВАТЕЛИ

Эти приборы выпускаются специально для подогрева воды в бассейнах (рис. 5.11) и оборудованы регуляторами температуры. Обычно электрические нагреватели включаются в электросеть. Применяются нагреватели мощностью 9 кВт, встроенные

в систему. Их можно устанавливать в основной линии (фильтрующее устройство - впускные отверстия) или в дополнительной ветви. Для установки

в ванне используют нагреватели мощностью 18 кВт.

Мощность прямоточного электронагревателя равна максимальным суточным теплопотерям, деленным на длительность работы.

Рис. 5.11. Прямоточный электронагреватель для открытых бассейнов

1-ограничитель; 2-регу- лятор; 3-крышка; 4- датчик ограничителя; 5- нагревательный фланец; б-отбойный щиток; 7- датчик регулятора; 8-уг- ловое соединение; 9 - монтажный элемент; 10предохранитель; 11 - шайба из тефлона; 12-вы- пуск; 13-труба; 14трубчатый нагреватель; 15 -подача

ТЕПЛОВЫЕ НАСОСЫ, ПРИМЕНЯЕМЫЕ ДЛЯ ОТОПЛЕНИЯ ОТКРЫТЫХ БАССЕЙНОВ

При использовании тепловых насосов получают определенное количество тепла. Отношение затраченной энергии к полезному теплу, так называемый коэффициент производительности, зависит от разности температур на обеих сторонах теплового насоса (испаритель конденсатор); при увеличении разности температур коэффициент производительности снижается. Разность температур между испарителем и конденсатором в свою очередь зависит с одной стороны от разности температур между поглощающей средой и теплопотребителем, а с дру- гой-от требуемой разности температур для передачи тепла от среды испарителю и от конденсатора к потребителю. В последнем случае существенную роль играют вид поглощающей среды и размер передаточных поверхностей: при больших поверхностях тепловой напор меньше, а коэффициент производительности выше.

Рис. 5.12. Разрез системы солнечного отопления с естественной циркуляцией. Для регулировки необходим циркуляционный насос

/ - солнечная радиация

ОТОПЛЕНИЕ ОТКРЫТЫХ БАССЕЙНОВ С ПОМОЩЬЮ СОЛНЕЧНЫХ КОЛЛЕКТОРОВ

В связи с относительно небольшой разностью температур между наружным воздухом и водой плавательного бассейна (10 К) коэффициент полезного действия солнечных коллекторов, используе-

мых для обогрева открытых бассейнов, в летнее время относительно благоприятен: каждые 1 м2 коллектора дает ежегодно от 3 (апрель) до 5 кВт (июль, август).

В летнее время рекомендуется применять простые солнечные коллекторы (в том числе из гибкого пластика). В зависимости от коррозионной стойкости, сопротивления течению, положения и размещения имеются следующие возможности подключения солнечных коллекторов:

к ванне бассейна с установкой фильтров;

к ванне бассейна с размещением коллектора на уровне ванны и естественным подъемом горячей воды в процессе эксплуатации (рис. 5.12), к ванне бассейна с собственным питающим насосом;

коллектор с собственным питающим насосом и теплопередачей с помощью противоточного теплообменника, установленного в циркуляционной линии фильтров.

Коллекторы, подключенные непосредственно к ванне бассейна, подвержены коррозии и должны выполняться из соответствующих материалов. В них также наблюдаются отложения извести. Поэтому их можно применять только там, где проведено умягчение воды.

Важным требованием является возможность ре- улирования температуры, так как только в дневное зремя тепло поступает от коллектора в ванну, а в ночное время коллектор может служить для охлаждения ванны. Регулирование температуры воды в бассейне достигается путем подключения до-

Рис. 5.13. Схема комбинированного отопления открытого бассейна (солнечный коллектор/обычное отопление)

1 -солнечная радиация; 2 -солнечный коллектор; 3 -обратный клапан; 4-фильтр; 5-насос; 6- задвижка; 7 - запорный клапан; 8-теплообменник системы отопления

мового отопления в качестве комбинированной системы (рис. 5.13).

Солнечные коллекторы в летнее время рекомендуется ориентировать на юг (юго-запад) под утлом 35° к горизонту. Однако применяются и горизонтальные, ориентированные на юго-восток и запад. Эффективность использования солнечных коллекторов в зимнее время определяется в каждом конкретном случае. Для большинства коллекторов требуется проведение дополнительных морозозащитных мероприятий.

Расчет солнечных коллекторов. Площадь солнечных коллекторов равна частному от деления максимальных суточных теплопотерь на тепловую мощность 1 м 2 коллектора в начале сезона.

Расчетная площадь коллектора может быть снижена при уменьшении расхода тепла за счет укрытия ванны или использования комбинированной системы отопления. Простейшим примером комбинированной системы может служить заполнение ванны бассейна подогретой водой, взятой из домовой системы горячего водоснабжения.

РАСХОД ТЕПЛА НА ОТОПЛЕНИЕ КРЫТЫХ БАССЕЙНОВ

Затраты на отопление крытых бассейнов составляют существенную часть от эксплуатационных расходов (20-60%). Снижение этих затрат является задачей не только инженеров-сантехников, но и архитекторов и эксплуатационников.

ВОЗМОЖНОСТИ ЭКОНОМИИ ТЕПЛА

При рассмотрении вопроса об экономии тепла следует исходить из теплового баланса бассейна (рис. 5.14) с учетом удельного веса отдельных составляющих расхода тепла (рис. 5.15).

Рис. 5.14. Тепловой баланс крытого бассейна

1 -душевая вода; 2- испарение; 3-вентиляция; 4-осушка; 5 теплопередача.

Рис. 5.15. Составляющие расхода тепла в индивидуальных и гостиничных крытых бассейнах

I - индивидуальный крытый бассейн; 2 - гостиничный крытый бассейн; 3 вентиляция; 4 -испарение; 5 - теплопередача; 6-свежая вода

ПОТЕРИ ТЕПЛА ЗА СЧЕТ ВЕНТИЛЯЦИИ И ИСПАРЕНИЯ

Вентиляционная установка крытого бассейна служит прежде всего для осушки воздуха. Осушка воздуха осуществляется за счет воздухообмена, т. е.

замены внутреннего воздуха более сухим за счет подогрева наружного воздуха.

При испарении воды из ванны бассейна также расходуется тепло - в среднем 0,70 кВт ч (540 ккал) на 1 кг воды.

К потерям энергии на испарение также относится электроэнергия, расходуемая вентиляционной установкой -0,05-3 Вт"ч на 1 м3 воздуха.

Расход тепла кВт ч/м3 на первоначальный подо-

грев свежей воды составляет

(Vw-Vf 1,163

G=OV-K,)U63 .

Это означает, что для того, чтобы нагреть свеже-

налитую воду с температурой

10°С до температуры

требуемой

в бассейне

необходимо

20 кВт ч, а для

душевой воды с

температурой

45°С-40 кВт-ч на 1 м3 воды.

При расчете расхода воды для принятия душа исходят из нормы 40 л на 1 чел. В индивидуальных бассейнах этот расход не намного превышает обычную норму, установленную для ванных комнат, и может не приниматься во внимание. В гостиничных бассейнах расход горячей воды при пользовании душами составляют 20-100% от расхода горячей воды в системе центрального отопления.

Расход тепла на теплопередачу прежде всего может быть снижен за счет совершенствования теплоизоляции ограждающих конструкций. Особенно надежную теплоизоляцию должны иметь участки, где установлены нагревательные приборы, имеющие более высокую температуру, чем воздух в помещении.

Весьма важное значение приобретают геплопотери через окна, уменьшение их площади может способствовать существенной экономии, однако снижает качество зала. Поэтому рекомендуется применять стекла с высокой теплоизолирующей способностью (трех- и четырехслойное остекление,

а также двухслойное остекление типа «Термолюкс»

с к = 1,4), где выпадение конденсата возможно лишь при относительно низких температурах наружного воздуха (для стекол «Термолюкс» - минус 6°С) и, следовательно, не требуется специального обогрева окон. При этом не только упрощается вентиляционная система и снижается ее мощность, но и отпадают дополнительные потери тепла при обдуве окон горячим воздухом или их обогреве другими методами. Поверхности окон ск = 2 могут иметь потери тепла, равные нулю, или даже аккумулировать тепло. Существенный недостаток и опасность для окон имеет традиционное расположение отопительных приборов непосредственно под окнами. Тепловое

излучение отопительных приборов, составляющее до 2 /з теплоотдачи в зависимости от их конструкции, почти наполовину теряется.

Снижение температуры воздуха в помещении на 10% позволяет на столько же уменьшить тегшопотери от теплопередачи, однако при неизменной температуре воды возрастут испарения (табл. 5.8) и мощность вентиляционной системы, необходимой для осушения воздуха (табл. 5.9).

В табл. 5.8 дана ориентировочная величина испарений в крытом плавательном бассейне (фактические значения могут отличаться на величину в интервале от -20 до +50%).

В табл. 5.9 приведены ориентировочные значе-

Таблица 5.8

Таблица 5.9

пии зависит от аккумулирующей способности помещения по отношению к площади окон. Чтобы не возникало перегрева помещения солнечными лучами, рекомендуется применять регулируемые защитные устройства в зависимости от количества поступающей энергии (селеновыеэлементы или фотосопротивление) и регулировать степень обогрева отопительных приборов. Если солнце светит достаточно ярко, то при включении отопительных приборов должны автоматическизакрываться жалюзи на окнах.

РАСХОД ТЕПЛА НА ВЕНТИЛЯЦИЮ И ИСПАРЕНИЕ

На количество испаряющейся влаги влияют движение воды, температура и влажность воздуха в помещении, движение воздуха над ванной бассейна (рис. 5.16, 5.17) и у поверхности стен и окон, движение людей, конструкция желобов и уровень воды, температура приточного воздуха и размещение вентиляционного оборудования, расположение окон и их теплоизолирующая способность.

Обычно расход тепла на вентиляцию и испарение не выше, а часто даже значительно ниже, чем потери тепла степлопередачей. Однако количество факторов, влияющих на расход тепла, связанный с вентиляцией и испарением, весьма велико, что при неправильной эксплуатации может привести к увеличению теплопотерь до 300-400%. Для оценки могут использоваться фактические данные, где теплопотери на испарение составляют 0,7 кВт ч/кг воды.

тельная влажность воздуха 65%

Рис. 5.17. Схема деформации граничного слоя воздуха и переходных слоев при движении воздуха

ИСПАРЕНИЯ БАССЕЙНА ВО ВРЕМЯ ЕГО ПРОСТОЯ

Испарения из ванны бассейна в промежутках между его эксплуатацией значительно ниже, чем считалось ранее. При средней температуре воздуха 30°С и его влажности 70% испарения становятся весьма незначительными. По современным представлениям рекомендуемое ранее повышение температуры в зале бассейна в периоды его простоя нецелесообразно, так как длительное повышение температуры воздуха приводит и к повышению температуры воды, а возможность ее охлаждения во время купания до температуры, приял ной для человека, практически исключена. Рекомендуется установить в помещении влажность воздуха около 70% и тем самым практически приостановить испарения во время простоя бассейна.

Однако такая мера дает положительные результаты только в том случае, когда поверхность ванны находится в спокойном состоянии. Обдувание зеркала воды вентиляцией или холодным воздухом из окон снижает точку равновесия испарений, что приводит к их росту при более низкой влажности воздуха.

ИСПАРЕНИЯ БАССЕЙНА ВО ВРЕМЯ КУПАНИЯ

В период эксплуатации бассейна испарениясущественно возрастаюти поэтому суммарное количество испарающейся воды в значительной мере зависю от соотношения времени простоя к времени эксплуатации.

ОСУШЕНИЕ ВОЗДУХА

При обычном осушении воздуха путем воздухообмена и при использовании вторичного тепла существенное влияние оказывают температура н влажность воздуха в помещении. Например, при температуревоздуха в помещении 30°Си относительной влажности 60% расход тепла наиспарение составляет 1,3 кВт-ч на 1 кг воды (0,7 кВт-ч на испарение и 0,6 кВт ч на воздухообмен), а при температуре 28°С и относительной влажности 50% - 1,74 (0,7+ 1,04) кВтч. Расход тепла на воздух обмен растет в обратной зависимости от темпе туры и влажности воздуха в помещении.

Применение теплообменников вторичного теп позволяет снизить расход тепла, необходимого для воздухообмена, но не менее 0,7 кВт-ч на 1 кг исгц ряющейся влаги при теоретически 100%-ном ио

Вентиляционная установка крытого бассейна служит прежде всего для осушки воздуха. Осушка воздуха осуществляется за счет воздухообмена, т. е. замены внутреннего воздуха более сухим за счет подогрева наружного воздуха.
При испарении воды из ванны бассейна также расходуется тепло - в среднем 0,70 кВт ч (540 ккал) на 1 кг воды.
К потерям энергии на испарение также относится электроэнергия, расходуемая вентиляционной установкой - 0 , 0 5 - 3 В т " ч на 1 м3 воздуха.
Расход тепла кВт ч/м3 на первоначальный подогрев свежей воды составляет QG=O(VVw--KVf,))U1,1663.
Это означает, что для того, чтобы нагреть свеженалитую воду с температурой 10°С до температуры воды, требуемой в бассейне (27°С), необходимо 20 кВт ч, а для душевой воды с температурой 45°С-40 кВт-ч на 1 м3 воды.
При расчете расхода воды для принятия душа исходят из нормы 40 л на 1 чел. В индивидуальных бассейнах этот расход не намного превышает обычную норму, установленную для ванных комнат, и может не приниматься во внимание. В гостиничных бассейнах расход горячей воды при пользовании душами составляют 20-100% от расхода горячей воды в системе центрального отопления.
Расход тепла на теплопередачу прежде всего может быть снижен за счет совершенствования теплоизоляции ограждающих конструкций. Особенно надежную теплоизоляцию должны иметь участки, где установлены нагревательные приборы, имеющие более высокую температуру, чем воздух в помещении.
Весьма важное значение приобретают теплопотери через окна, уменьшение их площади может способствовать существенной экономии, однако снижает качество зала. Поэтому рекомендуется применять стекла с высокой теплоизолирующей способностью (трех- и четырехслойное остекление, а также двухслойное остекление типа «Термолюкс» с к = 1 , 4) , где выпадение конденсата возможно лишь при относительно низких температурах наружного воздуха (для стекол «Термолюкс » - минус 6°С) и, следовательно, не требуется специального обогрева окон. При этом не только упрощается вентиляционная система и снижается ее мощность, но и отпадают дополнительные потери тепла при обдуве окон горячим воздухом или их обогреве другими методами. Поверхности окон с к = 2 могут иметь потери тепла, равные нулю, или даже аккумулировать тепло. Существенный недостаток и опасность для окон имеет традиционное расположение отопительных приборов непосредственно под окнами. Тепловое излучение отопительных приборов , составляющее до 2/з теплоотдачи в зависимости от их конструкции, почти наполовину теряется.



mob_info