Применение электромиографии в стоматологии. Электромиография жевательных мышц Миография жевательных мышц

Электромиография - метод исследования двигательного аппарата, основанный на регистрации биопотенциалов скелетных мышц. Электромиографию используют в хирургической и ортопедической стоматологии, ортодонтии, стоматоневрологии как функциональный и диагностический методы для исследования функций периферического нейромоторного аппарата оценки координации мышц челюстно-лицевой области во времени и по интенсивности, в норме и при патологии - при травмах и воспалительных заболеваниях челюстно-лицевой области, аномалиях прикуса, миопластических операциях, дистрофиях и гипертрофиях жевательных мышц, расщелинах мягкого неба и других заболеваниях.

ФИЗИЧЕСКИЕ И ФИЗИОЛОГИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОМИОГРАФИИ

Сокращение мышечной ткани вызывается потоком импульсов, возникающих в различных отделах центральной нервной системы и по двигательным нервам распространяющихся в мышцы. Возбуждение двигателе ной единицы нейромоторного аппарата проявляется генерацией потенциалов действия с интегральным выражением отдельных мышечных волокон. Возбуждение мышечной ткани представляет сложный комплекс явлений, складывающихся из усиления обменных процессов, повышения теплопродукции, из специфической деятельности (сокращение мышечных волокон), изменения электрического потенциала в возбужденном участке мышц. Для целей электромиографии непосредственный практический интерес представляет изменение электрического потенциала мышечного волокна.

В возникновении электрических (мембранных) потенциалов решающую роль играют изменение ионной проницаемости клеточных мембран, регуляторные механизмы этого процесса, ионы натрия и калия, а также хлора и кальция. На примере функции так называемого натрий-калиевого насоса можно рассмотреть механизм возникновения потенциалов покоя и действия мышечной клетки.

Потенциал покоя обусловлен функцией насоса клетки, т. е. движения ионов натрия из клетки в межклеточную жидкость, а ионов калия из нее внутрь клетки через клеточную мембрану. Следствием этого перехода является изменение концентрации ионов в клетке и возникновение ЭДС. Схема возникновения потенциала действия мышечной клетки такова: под воздействием раздражителя (нервного импульса) резко повышается проницаемость мембраны мышечной клетки для ионов натрия (примерно в 20 раз больше, чем для ионов калия). Вследствие значительного различия концентрации ионов натрия и калия в эту фазу деполяризации мембрана мышечной клетки становится заряженной отрицательно (фаза деполяризации). Вторая фаза (фаза реполяризации) обусловлена инактивацией натрий-калиевого насоса: движение ионов натрия из межклеточной жидкости в клетку прекращается. При воздействии последующих нервных импульсов цикл фаз де- и реполяризации повторяется. Таким образом, разность концентраций ионов натрия и калия в мышечной клетке обусловливает возникновение ЭДС - потенциалов покоя и действия, которые с помощью электродов, электронных усилителей и регистраторов можно записать графически.

С помощью электромиографии регистрируют изменения разности потенциалов внутри или на поверхности мышцы, возникающие в результате распространения воз-

Суждения по мышечным волокнам. Регистрируемые изменения разности потенциалов (или биоэлектрическую активность) мышц называют электромиограммой (ЭМГ).

Электромиография основана на регистрации потенциалов действия мышечных волокон, функционирующих в составе двигательных единиц (ДЕ). ДЕ - функциональная единица произвольной и рефлекторной активности мышцы. Она состоит из мотонейрона и группы мышечных волокон, иннервируемых этим мотонейроном (рис. 43).

Мышечные волокна, входящие в одну ДЕ, возбуждаются и сокращаются одновременно в результате возбуждения мотонейрона. Количество, мышечных волокон, иннервируемых одним мотонейроном, т. е. входящих в одну ДЕ, неодинаково в различных мышцах. В собственно жевательных мышцах на один мотонейрон приходится 100 мышечных волокон, в височной - 200; в мимических мышцах ДЕ более мелкие, они включают до 20 мышечных волокон. В небольших мимических мышцах это соотношение еще меньше; таким образом, обеспечивается высокий уровень дифференциации сокращений мимических мышц, обусловливающих широкую гамму мимики лица.

В состоянии покоя мышца не генерирует потенциалов действия, поэтому ЭМГ расслабленной мышцы имеет вид изоэлектрической линии. В результате прохождения импульсов от мотонейронов по нерву через нервно-мышечные окончания происходит возбуждение ДЕ, которое можно зарегистрировать игольчатым электродом в виде потенциала действия ДЕ, являющегося алгебраической суммой потенциалов действия отдельных мышечных волокон. Потенциал действия отдельной ДЕ обычно имеет вид 2-3-фазного колебания с амплитудой 100-3000 мкВ и длительностью 2-10 мс (рис. 44).

Увеличение силы сокращения мышцы возникает вследствие увеличения числа работающих ДЕ и частоты их разрядов. На ЭМГ этот процесс выражается в увеличении частоты и амплитуды колебаний, в результате временной и пространственной суммации потенциалов действия ДЕ (рис. 45). Такую ЭМГ называют интерференционной. Накожными электродами обычно регистрируют интерференционную ЭМГ, т. е. активность большого числа ДЕ участка мышцы, расположенного вблизи электродов, суммированную во времени и в пространстве. Условия пространственной суммации потенциалов действия ДЕ (т. е. пространственное расположение мышечных волокон), различная удаленность «генераторов» биопотенциалов от регистрирующих электродов являются одним из факторов, определяющих параметры регистрируемой ЭМГ. ЭМГ отражает степень моторной иннервации, косвенно свидетельствует об интенсивности сокращения отдельной мышцы и дает точное представление о временных характеристиках этих процессов.

Различают три основных вида электромиографии:

  • 1) интерференционная электромиография (синонимы:, поверхностная, суммарная, глобальная), проводят ее посредством отведения биопотенциалов мышц, накладывая электроды на кожу, площадь отведения большая;
  • 2) локальная электромиография - регистрацию активности отдельных ДЕ осуществляют с помощью игольчатых электродов;
  • 3) стимуляционная электромиография - производят регистрацию электрического ответа мышцы на стимуляцию нерва, иннервирующего эту мышцу.

Поскольку запись ЭМГ является результатом совокупной деятельности мышцы как источника биопотенциалов и аппаратуры, с помощью которой отводят и регистрируют эти биопотенциалы, следует учитывать влияние методических условий на процесс регистрации ЭМГ.

Электромиография в стоматологии. Электромиография (ЭМГ) – метод исследования двигательного аппарата, основанный на регистрации биопотенциалов скелетных мышц. ЭМГ часто используют в хирургической и ортопедической стоматологической практике как функциональный и диагностический метод исследования функций периферического нейромоторного аппарата и для оценки координации мышц челюстно-лицевой области во времени и по интенсивности, в норме и при патологии.

ЭМГ основана на регистрации потенциалов действия мышечных волокон, функционирующих в составе двигательных (моторных, или нейромоторных) единиц. Моторная единица (МЕ) состоит из мотонейрона и группы мышечных волокон, иннервируемых этим мотонейроном. Количество мышечных волокон, иннервируемых одним мотонейроном, неодинаково в различных мышцах. В жевательных мышцах на один мотонейрон приходиться около 100 мышечных волокон, в височной – до 200, в мимических мышцах МЕ более мелкие, они включают до 20 мышечных волокон. В небольших мимических мышцах это соотношение еще меньше, что обеспечивает высокий уровень дифференциации сокращений мимических мышц, обусловливающих широкую гамму мимики.

В состоянии покоя мышца не генерирует потенциалов действия, поэтому ЭМГ расслабленной мышцы имеет вид изоэлектрической линии. Потенциал действия отдельной МЕ при регистрации игольчатым электродом обычно имеет вид 2-3 фазного колебания с амплитудой 100-3000 мкв и длительностью 2-10 мсек. На ЭМГ увеличение числа работающих МЕ отражается в увеличении частоты и амплитуды колебаний в результате временной и пространственной суммации потенциалов действия. ЭМГ отражает степень моторной иннервации, косвенно свидетельствует об интенсивности сокращения отдельной мышцы и дает точное представление о временных характеристиках этого процесса.

Колебания потенциалов, обнаруживаемых в мышце при любой форме двигательной реакции, является одним из наиболее тонких показателей функционального состояния мышцы. Регистрируют колебания специальным прибором – электромиографом. Существует два способа отведения биотоков: накожными электродами с большими площадями отведения, и игольчатыми, которые вводятся внутримышечно.

Функциональное состояние жевательных мышц исследуют в период функционального покоя нижней челюсти, при смыкании зубов в передней, боковой и центральной окклюзиях, при глотании и во время жевания. Анализ полученной ЭМГ заключается в изменении амплитуды биопотенциалов, их частоты, изучении формы кривой, отношения периода активности ритма к периоду покоя. Величина амплитуды колебаний позволяет судить о силе сокращений мышц.

Различают три основных вида электромиографии:

1. Интерференционная ЭМГ (синонимы – поверхностная, суммарная, глобальная) проводится посредством отведения биопотенциалов мышц от электродов с большой площадью поверхности, которые накладываются на кожу.

2. Локальная ЭМГ – регистрация активности отдельных двигательных единиц с помощью игольчатых электродов.

3. Стимуляционная ЭМГ. Производится регистрация электрического ответа мышцы на стимуляцию нерва, иннервирующего эту мышцу.

Электромиограмма при жевании у людей с нормальными зубными рядами имеет характерную форму (рис1). Наблюдается четкая смена активного ритма и покоя, а залпы биопотенциалов имеют веретенообразные очертания. Между сокращением мышц рабочей и балансирующей сторон имеется координация, выражающаяся в том, что на рабочей стороне амплитуда ЭМГ высокая, а на балансирующей – примерно в 2.5 раза меньше.


Электромиографию начинали с предварительной подготовки больного к исследованию, разъясняли ему сущность исследования. Для снятия излишней напряженности в мышцах,



Рис. 74. Компьютерные томограммы двух пациентов с артрозами ВНЧС в двух проекциях (сагиттальной, фронтальной).


которая может возникнуть в результате волнения, страха и т. л., больному разъясняли о безболезненности и безвредности всех манипуляций.
Мы пользовались шестиканальным электромиографом фирмы “Медикор", который не требует специальной тиранизированной камеры (рис. 76). Снижение помех, создаваемых электрическим полем сети переменного тока, достигалось заземлением пациента через корпус электромиографа, который заземлен с общим контурным заземлением. Отведение биопотенциалов проводили накожными биполярными электродами. Расстояние между электродами было всегда постоянным и равным 15 мм, поскольку они были фиксированы пластмассой. Электроды укреплялись в центре моторных точек височных (переднее брюшко) и собственно жевательных мышц.
До настоящего времени исследователи определяли моторную точку пальпаторно и фиксировали электроды с помощью резиновой манжетки и липкого медицинского пластыря. Для идентичной записи электромиограмм в различные сроки исследования весьма важным моментом является фиксация биполярных электродов в одном и том же участке моторной точки височных и собственно жевательных мышц. С целью идентификации записи электромиограмм в разные сроки исследования в процессе лечения больных с патологией ВНЧС нами совместно с А.И. Довбенко и Н.Ю. Сеферян предложен аппарат для электромиографии височных и собственно жевательных мышц (рис. 76). Он состоит из крестовины, головного фиксатора, фиксаторов с ушными оливами, фиксатора переносицы, фиксатора затылка. В фиксаторе ушной оливы над ушной раковиной в области проекции височных мышц подвижно устанавливается горизонтальная пластинка со шкалой и плоской пружиной, а под ушной раковиной на этом же рычаге прикреплен сектор со шкалой, снабженный пружинящей стрелкой с продольным пазом и делениями. Вначале пальпаторно определяют примерную локализацию моторных точек височных и собственно жевательных мышц. Кожную поверхность в данных участках тщательно обрабатывают спиртом и эфиром. Для достижения лучшего контакта “электрод - кожа" и снижения межэлектродпого сопротивления электроды смачивают 0,9% раствором хлористого натрия. Электроды устанавливают под плоской пружиной с делениями в области височных мышц и пол пружинящей стрелкой щечного полуовального сектора. Затем визуально контрольным прибором, находящимся на передней панели электромиографа, перемещая электрод по пазу пружинящих фиксаторов, находят точную локализацию центра моторной точки и контролируют качество контакта с кожей. Место локализации электродов точно фиксируют с помощью шкалы с делениями и заносят в протокол исследования.
При правильном наложении электродов в состоянии относительного физиологического покоя нижней челюсти электромиограмма имеет вил изоэлектрической линии. При максимальном сжатии челюстей появление биоэлектрической активности перед записью функциональных проб проверяют и настраивают аппаратуру. Переключатель усилителя устанавливают в положение 50 мм/сек, просят исследуемого произвести несколько раз сжатие и расслабление челюстей. Регулируя переключателем, следим, чтобы максимальная амплитуда осцилляций не превышала рамки экрана или была чрезмерно малой. Замер амплитуды производят с помощью масштабной линейки. После предварительной настройки аппаратуры приступают к изучению функциональной деятельности жевательной мускулатуры.
При анализе полученных данных проводилась качественная и количественная оценка электромиограмм:
а) переход фазы биоэлектрической активности (БЭА) в фазу биоэлектрического покоя (БЭП) резкий или с продолжением возбуждения в фазе покоя (миологическая задержка);
б) степень размаха амплитуды колебаний во время акта жевания и при максимальном сжатии челюстей в положении центральной окклюзии;
в) продолжительность акта жевания и акта глотания в секундах;
г) ритмичность, синхронность сокращения жевательных мышц, наличие осцилляций как в состоянии относительного физиологического покоя жевательных мышц, так и в фазе БЭП во время акта жевания. Количественному подсчету подвергали амплитудные показатели элек- тромиограмм во время акта жевания и сжатия челюстей (рис. 77).
Каждое смыкание зубных рядов отражается появлением биопотенциалов с различной степенью амплитуды колебаний. Величина амплитуды биопотенциалов зависит от степени сокращения жевательных мышц. При регистрации произвольного акта жевания с раздражителем (1 см3 черного хлеба) у исследуемых контрольной группы отмечается четкий переход фазы биоэлектрической активности (БЭА) в фазу биоэлектрического покоя (БЭП) всех исследуемых групп мышц. С целью получения исходных и сопоставления электромиогра- фических данных, полученных на больных с патологией сустава с показателями нормы, дополнительно проводилось обследование височных и жевательных мышц у 10 практически здоровых лиц в возрасте от 16 до 36 лет с интактными зубами и ортогнастическим прикусом (контрольная группа).

Электромиография (ЭМГ) — объективный метод исследования нейромышечной системы путем регистрации электрических потенциалов жевательных мышц, позволяющий оценить функциональное состояние зубочелюстной системы.

Различают три основных метода ЭМГ:
1) интерференционный (поверхностный, суммарный, глобальный), при котором электроды накладывают на кожу;
2) локальный, при котором исследование проводят с применением игольчатых электродов;
3) стимуляционный, при котором проводят измерение скорости распространения электрического импульса от места его нанесения до другого участка стимулируемогонерва или иннервируемой им мышцы.

Для суждения о состоянии жевательных мышц достаточно проведение интерференционной ЭМГ с помощью поверхностных электродов.

Методика ЭМГ-исследования. ЭМГ-исследованиям жевательных мышц при стоматологических заболеваниях посвящено много работ [Персии Л.С, Хватова В.А., Ерохина И.Г., 1982; Петросов Ю.А., 1982; Хватова В.А., 1985; Малевич О.Е., Житний Н.И., 1991; Гречко В.Е. и др., 1994; Онопа Е.Н. и др., 2003; Bessette R. et al., 1971; FreesmeyerW., 1993].

Рис. 3.57. ЭМГ-активность жевательных (1), височных (2), латеральных крыловидных (3) и надподъязычных мышц (4) при сжатии челюстей (А) и заданном жевании (Б) в норме. а — справа, б — слева.

Электрическую активность жевательных мышц регистрируют одновременно с двух сторон. Для отведения биопотенциалов используют поверхностные чашечковые электроды. Электроды фиксируют в области моторных точек (участки наибольшего напряжения мышц, которые определяют пальпаторно).

Рис. 3.58. Время рефлекторного торможения активности правой (а) и левой (б) жевательных мышц в норме.

Для записи ЭМГ применяют функциональные пробы. Регистрируют ЭМГ в физиологическом покое нижней челюсти, при сжатии челюстей в привычной окклюзии, произвольном и заданном жевании (рис. 3.57).
Кроме того, изучают мандибулярный рефлекс (при постукивании неврологическим молоточком по подбородку по средней линии) при сжатии челюстей в положении центральной окклюзии.

Мандибулярный рефлекс — время рефлекторного торможения активности жевательных мышц, имеет диагностическое значение (рис. 3.58).

При анализе ЭМГ определяют следующие показатели: среднюю амплитуду биопотенциалов, количество жевательных движений в одном жевательном цикле, продолжительность одного жевательного цикла, время биоэлектрической активности (БЭА) и биоэлектрического покоя (БЭП) жевательной мускулатуры в фазе одного жевательного движения. Полученные данные сравнивают с показателями нормальной ЭМГ-активности жевательной мускулатуры.

При электромиографии наружных крыловидных мышц используют концентрические игольчатые электроды. Каждый электрод — тонкая полая игла диаметром 0,45 мм, в которую введена проволока, изолированная от внешней оболочки на всем протяжении за исключением кончика. Перед введением игольчатые электроды выдерживают 30 мин в специальном стерилизаторе.

Рис. 3.59. Момент записи ЭМГ наружных крыловидных мышц. Игольчатые электроды введены непосредственно в мышцу вблизи шейки суставного отростка (собственная методика).

В литературе описаны два способа введения электродов — внутриротовой и внеротовой. Внутриротовой метод технически трудно выполнить, он не точен и не дает возможность изучить активность мышц во время жевания. Внеротовой метод введения игольчатых электродов через полулунную вырезку нижней челюсти не позволяет осуществить запись ЭМГ во время функции жевания, так как игольчатый электрод проходит через сухожилие жевательной мышцы.

Разработан метод введения игольчатого электрода непосредственно в мышцу вблизи шейки суставного отростка нижней челюсти (В.А.Хватова, А.А.Никитин А.А. и др.1)
После обработки кожи лица спиртом электрод вводят в мягкие ткани шейки суставного отростка нижней челюсти, слегка оттягивают на себя, чтобы его рабочая часть находилась в мышце. Такое положение электрода позволяет свободно и безболезненно производить все движения челюсти (рис. 3.59). Осложнение в виде кратковременного ограничения открывания рта наблюдали редко.

В норме отмечаются согласованная функция мышц-синергистов и антагонистов, четкая ритмическая смена фаз БЭА и БЭП. В фазе одного жевательного движения время ЭМГ-активности жевательных, височных и наружных крыловидных мышц меньше, а надподъязычных мышц равно времени ЭМГ «покоя».

В периоде покоя отсутствует спонтанная активность мышц. Средняя амплитуда ЭМГ всех исследуемых мышц при сжатии челюстей меньше, чем при жевании. При произвольном жевании происходит периодическая смена функционального центра, наблюдается перемежающая активность мышц справа и слева. При этом жевательные и наружные крыловидные мышцы более отчетливо реагируют на смену функционального центра, чем височные и надподъязычные мышцы. При заданном жевании на рабочей стороне повышается средняя амплитуда ЭМГ жевательной, височной и надподъязычной мышц, а на противоположной — наружной крыловидной мышцы.

Жевательные и височные мышцы при жевании проявляют синхронную активность, а залпы ЭМГ-активности наружных крыловидных и надподъязычных мышц располагаются между залпами активности жевательных и височных мышц.

В норме при физиологическом покое жевательных мышц ЭМГ-активность отсутствует, в то время как при мышечно-суставной дисфункции такая активность доходит до 170 мкВ, а при явлениях бруксизма могут наблюдаться и более высокие амплитуды. Длительность латентного периода мандибулярного рефлекса увеличивается более чем в 2 раза.

В фазе одного жевательного движения время БЭП уменьшается, а время БЭА увеличивается.
ЭМГ-активность мышц-поднимателей при мышечно-суставной дисфункции уменьшается, а мышц дна полости рта увеличивается [Хватова В.А., 1986].

Степень нарушений ЭМГ-активности мышц соответствует степени выраженности болевого синдрома. У больных с полным регрессом клинических проявлений дисфункции после лечения параметры ЭМГ-исследования и латентное время подбородочного рефлекса приближаются к норме. В то же время в группе лиц с остаточными явлениями заболевания в конце курса лечения сохраняются изменения ЭМГ-картины: снижение БЭА мышц и увеличение латентного времени проведения рефлекса [Семенов И.Ю., 1997].

J.Travell, D.Simons (1989) обнаружили при болевом синдроме дисфункции ВНЧС триггерные точки (ТТ) в жевательных мышцах — участки повышенной раздражимости мышечной ткани, болезненной при сдавливании, из которых иррадиация боли происходит в определенные зоны.



mob_info